Theorem 11.5 (Invariance of flow) Let

\[F_1(w) = \Phi(u, v) + i\Psi(u, v) \]

denote the complex potential for a fluid flow in a domain \(G \) in the \(w \) plane, where the velocity is

\[V_1(u, v) = F_1'(w). \]

If the function \(w = S(z) = u(x, y) + iv(x, y) \) is a one-to-one conformal mapping from a domain \(D \) in the \(z \) plane onto \(G \), then the composite function

\[F_2(z) = F_1(S(z)) = \Phi(u(x, y), v(x, y)) + i\Psi(u(x, y), v(x, y)) \]

is the complex potential for a fluid flow in \(D \), where the velocity is

\[V_2(x, y) = F_2'(z). \]

The situation is shown in Figure 11.48.

Proof From Equation (11-34), \(F_1(w) \) is an analytic function. Since the composition of analytic functions is analytic, \(F_2(z) \) is the required complex potential for an ideal fluid flow in \(D \).

We note that the functions

\[\phi(x, y) = \Phi(u(x, y), v(x, y)) \quad \text{and} \quad \psi(x, y) = \Psi(u(x, y), v(x, y)) \]
are the new velocity potential and stream function, respectively, for the flow in D. A streamline or natural boundary curve

$$\psi(x, y) = K$$

in the z plane is mapped onto a streamline or natural boundary curve

$$\Psi(u, v) = K$$

in the w plane by the transformation $w = S(z)$. One method for finding a flow inside a domain D in the z plane is to conformally map D onto a domain G in the w plane in which the flow is known.

For an ideal fluid with uniform density ρ, the fluid pressure $P(x, y)$ and speed $|V(x, y)|$ are related by the following special case of Bernoulli’s equation:

$$\frac{P(x, y)}{\rho} + \frac{1}{2} |V(x, y)| = \text{constant}.$$

Note that the pressure is greatest when the speed is least.