1. Write out the Picard iteration scheme. If possible, find the solution.

(a) \(x' = x + 2, \ x(0) = 2 \). \(u_0 = 2, \ u_{k+1}(t) = 2 + \int_0^t (u_k(s) + 2)ds \).

\[
\begin{align*}
 u_0 &= 2 \\
 u_1(t) &= 2 + \int_0^t (2 + 2)ds = 2 + 4t \\
 u_2(t) &= 2 + \int_0^t (2 + 4s + 2)ds = 2 + 4t + 2t^2 \\
 u_3(t) &= 2 + \int_0^t (2 + 4s + 2s^2 + 2)ds = 2 + 4t + 2t^2 + \frac{2}{3}t^3 \\
 &\quad \cdots \\
 u_k(t) &= 2 + 4 \sum_{j=1}^k \frac{t^j}{j!} = 4 \sum_{j=0}^k \frac{t^j}{j!} - 2
\end{align*}
\]

Thus, \(u_k(t) \to 4e^t - 2 \), which is the solution of the IVP.

(b) \(x' = x^{4/3}, \ x(0) = 0 \). \(u_0 = 0, \ u_{k+1}(t) = 0 + \int_0^t (u_k(s))^{4/3}ds \).

Clearly every iterate is zero \(u_k(t) = 0 \), and the unique solution of the IVP is \(x(t) = 0 \).

(c) \(x' = x^{4/3}, \ x(0) = 1 \). \(u_0 = 1, \ u_{k+1}(t) = 1 + \int_0^t (u_k(s))^{4/3}ds \).

\[
\begin{align*}
 u_0 &= 1 \\
 u_1(t) &= 1 + \int_0^t 1^{4/3}ds = 1 + t \\
 u_2(t) &= 1 + \int_0^t (1 + s)^{4/3}ds = 1 + \frac{3}{4}(1 + t)^{7/3} - 3/7 = \frac{4}{7} + \frac{3}{7}(1 + t)^{7/3} \\
 u_3(t) &= 1 + \int_0^t \left(\frac{4}{7} + \frac{3}{7}(1 + s)^{7/3} \right)^{4/3}ds
\end{align*}
\]

The solution to the IVP is \(x(t) = -27(t - 3)^{-3} \).

(d) \(x' = \cos x, \ x(0) = 0 \). \(u_0 = 0, \ u_{k+1}(t) = \int_0^t \cos (u_k(s))ds \).

\[
\begin{align*}
 u_0 &= 0 \\
 u_1(t) &= \int_0^t \cos(0)ds = t \\
 u_2(t) &= \int_0^t \cos(s)ds = \sin(t) \\
 u_3(t) &= \int_0^t \cos(\sin(s))ds
\end{align*}
\]

The solution to the IVP is \(x(t) = 2 \tan^{-1}(\tanh(t/2)) \).
(c) \(x' = \frac{1}{2x}, \ x(1) = 1, \ u_0 = 1, \ u_{k+1}(t) = 1 + \int_1^t \frac{1}{2u_k(s)} \, ds \)

\[
\begin{align*}
 u_0 & = 1 \\
 u_1(t) & = 1 + \int_1^t \frac{1}{2} \, ds = 1 + \frac{1}{2} (t - 1) = \frac{1}{2} (t + 1) \\
 u_2(t) & = 1 + \int_1^t \frac{1}{s+1} \, ds = 1 - \log(2) + \log(t + 1)
\end{align*}
\]

The solution to the IVP is \(x(t) = \sqrt{t} \).

2. Let \(A \) be an \(n \times n \) matrix. Show that the Picard iteration scheme gives the solution \(e^{tA}X_0 \).

Solution. Here \(F(X) = AX \), so the Picard iteration scheme is \(U_0 = X_0, \ U_{k+1} = X_0 + \int_0^t AU_k(s) \, ds \). The iterates are

\[
\begin{align*}
 U_0 & = X_0 \\
 U_1(t) & = X_0 + \int_0^t AX_0 \, ds = (I + tA)X_0 \\
 U_2(t) & = X_0 + \int_0^t A(1 + sA)X_0 \, ds = X_0 + tAX_0 + \frac{t^2}{2} A^2 X_0 = \left(I + tA + \frac{t^2}{2} A^2 \right) X_0 \\
 \vdots \\
 U_k(t) & = \sum_{j=0}^{k} \frac{(tA)^j}{j!} X_0,
\end{align*}
\]

which converges to \(\sum_{j=0}^{\infty} \frac{(tA)^j}{j!} X_0 = e^{tA}X_0 \).

4. Verify the linearity principle for linear, nonautonomous systems.

Solution. Consider the equation \(X' = A(t)X \). Suppose \(X \) and \(Y \) are two solutions and \(\alpha, \beta \) are constants. Then

\[
\frac{d}{dt} (\alpha X + \beta Y) = \alpha X' + \beta Y' = \alpha A(t)X + \beta A(t)Y = A(t)(\alpha X + \beta Y).
\]

Thus \(\alpha X + \beta Y \) is also a solution.

6. Discuss the existence and uniqueness of solutions to \(x' = x^a, \ x(0) = 0, \) where \(a > 0 \).

Solution. For any \(a > 0, \ x(t) = 0 \) is a solution. So the question is whether or not this is the only solution. (Existence is guaranteed.) Notice that when \(a \geq 1, \ f(x) = x^a \) is continuously differentiable, so the existence & uniqueness theorem tells us that \(x(0) = 0 \) is the unique solution in this case. However, when \(0 < a < 1, \ f(x) \) is not continuously differentiable at \(x = 0 \), and separation of variables gives us an additional solution, \(x(t) = ((1-a)t)^{1/(1-a)} \). In fact, this can also be shifted to \(\tau \) for any \(\tau > 0 \), so there are infinitely many solutions when \(0 < a < 1 \).
7. For the system \(X' = A(t)X \), let \(P(t) \) be a matrix of solutions satisfying \(P' = A(t)P \), \(P(0) = P_0 \). (Notice that \(P_0 \) is a matrix.) First, suppose \(A(t) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is \(2 \times 2 \), and let \(X \) and \(Y \) be the columns of \(P \), so \(X' = AX \), \(Y' = AY \). We let \(W(t) = \det P(t) \). Then

\[
\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{pmatrix}, \quad \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} ay_1 + by_2 \\ cy_1 + dy_2 \end{pmatrix},
\]

so

\[
W' = \frac{d}{dt} \det P(t) = d \frac{dt}{dt} \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = d (x_1 y_2 - x_2 y_1)
=x_1' y_2 + x_1 y_2' - x_2' y_1 - x_2 y_1' = (ax_1 + bx_2) y_2 + x_1 (cy_1 + dy_2) - (cx_1 + dx_2) y_1 - x_2 (ay_1 + by_2) = (a + d)(x_1 y_2 - x_2 y_2) = \text{tr}A(t)W
\]

So \(W' = (\text{tr}A)W \), which has the unique solution

\[
W(t) = W(0) \exp \left(\int_0^t \text{tr}A(s) ds \right) \quad \text{or} \quad \det P(t) = (\det P_0) \exp \left(\int_0^t \text{tr}A(s) ds \right).
\]

For the general case, suppose \(P' = A(t)P \). Then, since \(P'(t) = \lim_{h \to 0} \frac{1}{h} (P(t + h) - P(t)) \),

\[
P(t + h) = hA(t)P(t) + P(t) + o(h) = (I + hA(t))P(t) + o(h)
\Rightarrow \det P(t + h) = \det(I + hA(t)) \det P(t) + o(h) = (1 + h \cdot \text{tr}A + O(h^2)) \det P(t) + o(h)
\Rightarrow \frac{1}{h} (\det P(t + h) - \det P(t)) = (\text{tr}A) \det P(t) + O(h)
\]

where we have used the fact that \(\det(I + h \cdot A) = 1 + h \cdot \text{tr}A + O(h^2) \). Now take the limit as \(h \to 0 \) on both sides to get

\[
\frac{d}{dt} \det P(t) = (\text{tr}A(t))P(t)
\]

Solving this equation gives the desired result.

8. Here is an example of a differential equation for which there is no solution for any initial condition:

\[
x' = \begin{cases}
1 & \text{if } x \text{ is rational} \\
-1 & \text{if } x \text{ is irrational}
\end{cases}
\]

For this equation \(x \) should be increasing at each rational number, but the slightest increase means it should pass an irrational number, at which it should be decreasing. This is impossible.