Throughout this assignment, \mathbb{H}^2 will refer to the upper half-plane; that is, the set $\{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$. Points in the model will refer to elements of this set. Lines will be systems of inequalities of the form $\{ x = c, y > 0 \}$ or $\{ (x - c)^2 + y^2 = r^2, y > 0 \}$. A point represented by an ordered pair is incident to a line represented by a system of inequalities if the ordered pair satisfies the inequality. If a path $\gamma(t) = (x(t), y(t))$ connects $\gamma(a) = (x_1, y_1)$ to $\gamma(b) = (x_2, y_2)$, then the length of that path can be computed as

$$\text{length}(\gamma) = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.$$

The distance between two points is then interpreted as the length of the shortest (continuous) path between them.

1. Read pages 371-376.

2. Consider the function $R : \mathbb{H}^2 \to \mathbb{H}^2$ defined by $D(x, y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$.
 (a) Check that R fixes the Euclidean unit circle centered at the origin.
 (b) Let $a \neq 0$. Describe what R does to the Euclidean ray $\{ (x, ax) \mid ax > 0 \}$.
 (c) Show that R sends points ‘inside’ the Euclidean unit circle centered at the origin to points ‘outside,’ and vice versa.
 (d) Suppose a path in \mathbb{H}^2 is parameterized by $\gamma(t) = (r(t) \cos(\theta(t)), r(t) \sin(\theta(t)))$ from $0 \leq t \leq 1$. With some calculation, one can show that its length is

$$\text{length}(\gamma(t)) = \int_0^1 \sqrt{\left(\frac{\theta'}{r(t)} (r(t) \cos(\theta(t)))\right)^2 + \left(\frac{\theta'}{r(t)} (r(t) \sin(\theta(t)))\right)^2} \, dt = \int_0^1 \sqrt{\frac{r'(t)^2 + r(t)^2 \theta'(t)^2}{r(t) \sin(\theta(t))}} \, dt.$$

Show that $R(\gamma(t))$ has the same length.

3. Recall that $T_c : \mathbb{H}^2 \to \mathbb{H}^2$ defined by $T_c(x, y) = (x + c, y)$ is an isometry. Recall also that $D_k : \mathbb{H}^2 \to \mathbb{H}^2$ defined by $D_k(x, y) = (kx, ky)$ is an isometry. Given any two points (x_1, y_1) and (x_2, y_2) in \mathbb{H}^2, show that $T_{x_2 - x_1} \circ D_{y_2} (x_1, y_1) = (x_2, y_2)$. In other words, given any two points in \mathbb{H}^2, there is an isometry taking one point to the other.

4. In \mathbb{R}^2, let l and m be two lines passing through the origin, and forming acute angle θ. Show that the composition of reflections across these lines is a rotation of angle 2θ. (Hint: Without loss of generality, let l be the x-axis, and let m pass through the first and third quadrants. Consider, first, what happens to points $(\cos \phi, \sin \phi)$ on the unit circle.)