HOMEWORK 2 SOLUTIONS

MATT RATHBUN
MATH 310, SECTION 3
ABSTRACT ALGEBRA

1.3 #2, 6, 13, 23; 2.1 #2, 8, 11, 27

Section 1.3.

2. Suppose that \(p \) is prime, and let \(a \) be an integer. Then \((a, p)\) is a positive divisor of \(p \), so it is either 1 or \(|p|\). If it is 1, then we are done. Otherwise, \(|p|\) is a divisor of \(a \), so \(p|a \) as well.

Conversely, suppose that for any \(a \in \mathbb{Z} \), either \((a, p) = 1\) or \(p|a \). Let us suppose, by way of contradiction, that \(p \) is not prime. Then \(p \) has a non-trivial factorization into primes, \(p = p_1 \cdot p_2 \cdots p_k \) for some \(k \geq 2 \). Let \(1 \leq l < k \). Suppose \(a = p_1 \cdot p_2 \cdots p_l \). Since \(l < k \), \(p \not| a \). But \((a, p) = ((p_1 \cdots p_l), (p_1 \cdots p_k)) = p_1 \cdots p_l \neq 1\). This contradicts our hypothesis, so \(p \) must be prime.

6. Suppose \(p \) is prime and \(p|a^n \). Then by Corollary 1.9, \(p|a \), so \(p^n|a^n \).

13. Consider the factorizations of \(a \) and \(b \) into primes: \(a = p_1^{n_1} \cdots p_r^{n_r}, \ b = q_1^{m_1} \cdots q_s^{m_s}, \) with \(n_i, m_j \geq 1 \). Then \(c^2 = ab = p_1^{n_1} \cdots p_r^{n_r} \cdot q_1^{m_1} \cdots q_s^{m_s} \). Taking the square root of both sides, we arrive at \(c = p_1^{m_1} \cdots p_r^{m_r} \cdot q_1^{m_1} \cdots q_s^{m_s} \). Since \(c \) is still an integer, the product on the right must be an integer as well. Since \((a, b) = 1 \), none of the \(p_i \) are the same as any of the \(q_j \), so it must be the case that each exponent \(n_i \) and \(m_j \) is even. But this says exactly that \(a = p_1^{m_1} \cdots p_r^{m_r} = (p_1^{m_1/2} \cdots p_r^{m_r/2})^2 \) and \(b = q_1^{m_1} \cdots q_s^{m_s} = (q_1^{m_1/2} \cdots q_s^{m_s/2})^2 \) are perfect squares.

23. Suppose there were a finite number of primes, \(p_1, \ldots, p_k \). Then consider the number \(n = (p_1 p_2 \cdots p_k) + 1 \). For each prime \(p_i \), \(n = p_i (p_i \cdots p_{i-1} \cdots p_1 \cdots p_k) + 1 \), so the Division Algorithm tells us that \(p_i \not| n \). But \(p_1, \ldots, p_k \) is supposed to be an exhaustive list of all the primes, and none of them divides \(n \). This contradicts the Fundamental Theorem of Arithmetic, so there must be infinitely many primes.

Section 2.1.

2.

(a) \(k \equiv 1 \pmod{4} \Rightarrow k - 1 = 4r \) for some \(r \in \mathbb{Z} \Rightarrow k = 4r + 1 \).

So \(6k + 5 = 6(4r + 1) + 5 = 24r + 11 \equiv 11 \equiv 3 \pmod{4} \).

(b) \(r \equiv 3 \pmod{10} \Rightarrow r - 3 = 10a \) for some \(a \in \mathbb{Z} \), and \(s \equiv -7 \pmod{10} \Rightarrow s + 7 = 10b \) for some \(b \in \mathbb{Z} \).

Then, \(r = 3 + 10a, s = -7 + 10b \).

So, \(2r + 3s = 2(3 + 10a) + 3(-7 + 10b) = 20a + 30b - 27 \equiv -27 \equiv -15 \equiv 5 \pmod{10} \).

8.

(a) \(2^{5-1} = 2^4 = 16 \equiv 1 \pmod{5} \).

(b) \(4^{7-1} = 4^6 = 4096 \equiv 1 \pmod{7} \).

(c) \(3^{11-1} = 3^{10} = 59049 \equiv 1 \pmod{11} \).

11.

(a) \{4\}

(b) \{5\}

(c) \{4,9,14\}

(d) \emptyset
27.
(a) The statement is false. $2 \cdot 3 \equiv 0 \pmod{6}$, but $2 \not\equiv 0 \pmod{6}$, nor $3 \not\equiv 0 \pmod{6}$.
(b) The statement is true when n is prime. Suppose n is prime and $ab \equiv 0 \pmod{n}$. Then $n|ab$. By Theorem 1.8, $n|a$ or $n|b$, which means either $a \equiv 0 \pmod{n}$, or $b \equiv 0 \pmod{n}$.