Math 21C-2
Practice Midterm

Name: __

Signature: ______________________________________

Student ID: _________________________________

• There are ten (plus cover and bonus) pages to the exam.
• The exam totals 100 points, plus 10 bonus points.
• You will have 90 minutes to complete the exam.
• No calculators, notes, or books allowed.
• Good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bonus</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Definitions and Examples:

 a. (2 points) Write the definition for a sequence to be bounded above. (An example is **not** sufficient for full credit.)

 b. (2 points) Write the definition of an alternating series. (An example is **not** sufficient for full credit.)

 c. (2 points) Write the definition for a sequence to diverge to infinity. (An example is **not** sufficient for full credit.)

 d. (2 points) Write the definition of the cross product of two vectors. (An example is **not** sufficient for full credit.)

 e. (2 points) Let $f = f(x)$. Write the definition of the Maclaurin series for f. (An example is **not** sufficient for full credit.)
2. (10 points) Short Answers

a. (5 points) State the \textit{Integral Test} for infinite series.

b. (5 points) State the \textit{nth-Term test} for infinite series.
3. (10 points) Determine whether the following sequences converge or diverge. If a sequence converges, find its limit.

a. (3 points) \(a_n = \ln(n + 1) - \ln(n) \).

b. (3 points) \(b_n = n2^{-\ln(n)} \).

c. (4 points) \(a_n = \frac{n!}{(-3)^n} \).
4. (10 points) Determine whether the following series converge conditionally, converge absolutely, or diverge.

a. (5 points) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{(\ln n)^n} \).

b. (5 points) \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{0.999999}} \).
5. (10 points) Determine the values of x for which the following series converges conditionally, converges absolutely, or diverges. What are the center, radius, and interval of convergence?

$$\sum_{n=2}^{\infty} n^n x^n.$$
6. (10 points) Compute (no shortcuts!!) the Taylor series centered at 1 for the function

\[f(x) = \sqrt{x}. \]
7. (10 points) Using what you know about familiar Taylor series, write a power series for $f(x) = e^{-x^2}$. Use the first 3 non-zero terms to estimate $\int_0^1 e^{-x^2} dx$.

(Hint: you should be familiar with the series for e^x.)
8. (10 points) Let \(P \) be the point \((\sqrt{2}/4, \sqrt{2}/4, -1)\), and \(Q \) be the point \((-\sqrt{2}/4, -\sqrt{2}/4, -1)\).

a. (3 points) Find the component form for \(\overrightarrow{PQ} \).

b. (3 points) Find the magnitude \(|\overrightarrow{PQ}| \).

c. (4 points) Find the unit vector in the direction of \(\overrightarrow{PQ} \).
9. (10 points) Let \(\vec{u} = 2\vec{i} + 3\vec{j} - \vec{k} \), and \(\vec{v} = 3\vec{i} - 2\vec{j} + 20\vec{k} \).

a. (3 points) Find \(\vec{u} \cdot \vec{v} \).

b. (3 points) Find \(\vec{u} \times \vec{v} \).

c. (4 points) Find \(\vec{u} \cdot (\vec{u} \times \vec{v}) \).
10. (10 points) Find parametric equations for the line which passes through \((2, 4, 5)\) and is perpendicular to the plane \(3x + 7y - 5z = 21\).
Bonus. (10 points) Let p_n denote the nth prime: $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$, etc. Determine whether the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{p_n^2}$$