Bibliography for Powell's Conjugate Gradient Method

short

 

  1. A Hybrid Algorithm Combining Powell Method with Chaos Optimization Method and its Application to Mechanical Optimum Design
    Huang, W.-p.; Wang, J.-n.; Yu, L.-f.
    Journal- Sichuan University Engineering Science Edition, 2001, vol. 33, no. 5, pp. 31-34, Ingenta
  2. The Realization of Wolfe-Powell Criterion in Engineering Optimization
    Zhouhong, W.; Yifang, Z.
    Journal- Huazhong University of Science and Technology Chinese Edition, 2000, vol. 28, no. 10, pp. 19-21, Ingenta
  3. Learning fuzzy control rules by constrained Powell's method
    Takahama, Tetsuyuki; Sakai, Setsuko  
    IEEE International Conference on Fuzzy Systems, v 2, 1999, p II-650 - II-655, Compendex.  
  4. Nonlinear numerical optimization with use of a hybrid genetic algorithm incorporating the modified Powell method.  
    Okamoto, Masahiro; Nonaka, Taisuke; Ochiai, Shuichiro; Tominaga, Daisuke
    Appl. Math. Comput.  91  (1998),  no. 1, 63--72, MathSciNet.  
  5. Clinical Treatment Planning Optimization by Powell's Method for Gamma Unit Treatment System.
    Yan, Y.; Shu, X.; Bai, Y.
    International journal of radiation oncology, biology, physics, 1997, vol. 39, no. 1, pp. 247, Ingenta
  6. Modification for Powell's method
    Zhu, Xiangyang; Xiong, Youlun  
    Kongzhi yu Juece/Control and Decision, v 11, n 2, Mar, 1996, p 308 Language: Chinese, English, Compendex.  
  7. Powell's Method Applied to Learning Neural Control of Three Unknown Dynamic Systems.
    Li, C.J.; Yan, L.; Chabat, N.W.
    Optimal control applications and methods, 1995, vol. 16, no. 4, pp. 251, Ingenta
  8. Simultaneous biparametric determination of total calcium and potassium in biological fluids by flow injection analysis. Use of Powell's method in the system optimization
    Araujo, Alberto N.; Jun, Shiao; Lima, Jose L.F.C.; Alonso, Julian; Poch, Manel; del Valle, Manel  
    Chemical Research in Chinese Universities, v 10, n 1, Feb, 1994, p 5, Compendex.  
  9. Comparison of the simplex and Powell methods with a weighted response function for the optimization of FIA systems.
    Alvares-Ribeiro, L.M.B.C.; Machado, A.A.S.C.; Alonso, J.
    Talanta, 1993, vol. 40, no. 7, pp. 1113, Ingenta
  10. Optimization Design for the Electron Emission System Using Improved Powell Method.
    Gu, C.X.; Shan, L.Y.; Chen, Z.R.
    Scanning microscopy, 1991, vol. 5, no. 4, pp. 937, Ingenta
  11. Structural optimization with nonlinear goal programming using Powell's method
    El-Sayed, Mohamed E.M.; Jang, T.S.  
    American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, v 32, n pt 1, Advances in Design Automation, 1991, p 273-276, Compendex.  
  12. Comparison of the Powell and simplex methods in the optimization of flow-injection systems. Simulation on modelled experimental surfaces and experimental optimizations.
    del Valle, M.; Poch, M.; Alonso, J.
    Analytica chimica acta, 1990, vol. 241, no. 1, pp. 31, Ingenta
  13. A direct method of unconstrained optimization based on the Powell's theorem
    Sun, Jiachang
    Ch?ing-tao hai yang ta hsueh hsueh pao, 1989, vol. 19, no. 3, pp. 100, Ingenta
  14. A method of relaxation curve fitting in the magnetic field produced by the lung---an algorithm of the Powell symmetric Broyden update for solving the nonlinear least-square problem. (Chinese)
    Liu, Qin Sheng
    J. Numer. Methods Comput. Appl. 10 (1989), no. 3, 129--134, MathSciNet.  
  15. On Powell's (1964) method and its modifications.
    Deng, Nai Yang; Yu, Wen Ci
    Operational research '87 (Buenos Aires, 1987), 863--874, North-Holland, Amsterdam, 1988, MathSciNet.  
  16. The speed of convergence of Powell's method. (Chinese)
    He, Li Min
    J. Fudan Univ. Natur. Sci. 27 (1988), no. 3, 305--312, MathSciNet.  
  17. A new improvement upon Powell's method. (Chinese)
    Yu, Wen Ci
    Qufu Shifan Daxue Xuebao Ziran Kexue Ban 14 (1988), no. 3, 56--62, MathSciNet.  
  18. A modification of Powell-Zangwill's method and its rate of convergence.
    He, Li Min
    A Chinese summary appears in Chinese Ann. Math. Ser. A 8 (1987), no. 5, 645. Chinese Ann. Math. Ser. B 8 (1987), no. 4, 479--487, MathSciNet.  
  19. Analogues of Dixon's and Powell's Theorems for Unconstrained Minimization with Inexact Line Searches  
    J. L. Nazareth  
    SIAM Journal on Numerical Analysis, Vol. 23, No. 1. (Feb., 1986), pp. 170-177, Jstor.  
  20. A modification of Powell-Zangwill's method and its rate of convergence. (Chinese)
    He, Li Min
    Chinese J. Oper. Res. 5 (1986), no. 1, 65, 29, MathSciNet.  
  21. On a variant of the method of Han and Powell with continuously differentiable penalty function.
    Kramp, Matthias
    Operations research proceedings 1984 (St. Gallen, 1984), 266--276, Springer, Berlin, 1985, MathSciNet.  
  22. The Han Powell algorithm applied to the optimization of the reactive power generation in a large scale electric power system.
    Franchi, L.; Innorta, M.; Marannino, P.
    Large scale systems: theory and applications 1983 (Warsaw, 1983), 611--617, IFAC Proc. Ser., 10, IFAC, Laxenburg, 1984, MathSciNet.  
  23. The Powell method with dimension reduction. (Chinese)
    Li, Xin; Wu, Wang Cheng
    J. Numer. Methods Comput. Appl. 5 (1984), no. 2, 95--102, MathSciNet.
  24. The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. II. An efficient implementation with linear.
    Schittkowski, Klaus
    Numer. Math. 38 (1981/82), no. 1, 115--127, MathSciNet.  
  25. The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. I. Convergence analysis.
    Schittkowski, Klaus
    Numer. Math. 38 (1981/82), no. 1, 83--114, MathSciNet.  
  26. The n-step square convergence of some minimization algorithms related to Powell's derivative free method.
    Stoer, Josef  
    Optimization: theory and algorithms (Confolant, 1981), 153--184, Lecture Notes in Pure and Appl. Math., 86, Dekker, New York, 1983, MathSciNet.  
  27. Parameter estimation by the Davidon-Fletcher-Powell method. (Russian)
    Bainikke, G.; Dzhaparidze, K. O.
    Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 374--380, MathSciNet.  
  28. Optimum Operation Of Fixed-Head Hydro-Thermal Electric Power Systems: Powell's Hybrid Method Versus Newton-Raphson Method.
    El-Hawary, M. E.; Landrigan, J. K.  
    IEEE Transactions on Power Apparatus and Systems, v PAS-101, n 3, Mar, 1981, p 547-554, Compendex.  
  29. Accelerated convergence for the Powell-Hestenes multiplier method.
    Jittorntrum, Krisorn
    Math. Programming 18 (1980), no. 2, 197--214, MathSciNet.  
  30. Constrained Minimization Using Powell's Conjugacy Approach  
    A. G. Buckley  
    SIAM Journal on Numerical Analysis, Vol. 13, No. 4. (Sep., 1976), pp. 520-535, Jstor.  
  31. Application Of Fletcher-Powell's Optimization Method To Process/Device Simulation Of Mosfet Characteristics.
    Yokoyama, Kiyoyuki; Yoshii, Akira; Adachi, Tohru; Kasai, Ryota  
    Solid-State Electronics, v 25, n 3, Mar, 1982, p 201-203, Compendex.  
  32. Modification Of Powell's Dogleg Method For Solving Systems Of Nonlinear Equations.
    Chen, Hern Shann; Stadtherr, Mark A.
    Computers & Chemical Engineering, v 5, n 3, 1981, p 143-150, Compendex.  
  33. A discussion of the theoretical basis of Powell's method. (Chinese)
    Teng, Nai Yang; Chu, Mei Fang
    Kexue Tongbao 24 (1979), no. 10, 433--437, MathSciNet.  
  34. Use Of Powell's Conjugate Gradient Minimization Method For Computing Concentration Profiles In Multicomponent And Multistage Separation Systems.
    Gilath, C.; Goodson, R. G.; Shraga, I.; Wolf, D.  
    Separation Science and Technology, v 13, n 5, 1978, p 409-428, Compendex.  
  35. Application of the Davidon-Fletcher-Powell method for finding estimates of the parameters with good asymptotic properties. (Russian)
    Bainikke, G.
    Soobshch. Akad. Nauk Gruzin. SSR 92 (1978), no. 3, 533--536, MathSciNet.  
  36. A note on Powell's method. (Chinese)
    Wu, Fang
    Acta Math. Sinica 20 (1977), no. 1, 14--15, MathSciNet.  
  37. Minimization of some non-differentiable functionals by the augmented Lagrangian method of Hestenes and Powell.
    Fortin, Michel
    Appl. Math. Optim. 2 (1975/76), no. 3, 236--250, MathSciNet.  
  38. Practical convergence conditions for the Davidon-Fletcher-Powell method.
    Lenard, Melanie L.
    Math. Programming 9 (1975), no. 1, 69--86, MathSciNet.  
  39. On the combination of the multiplier method of Hestenes and Powell with Newton's method.
    Rupp, R. D.
    J. Optimization Theory Appl. 15 (1975), 167--187, MathSciNet.  
  40. Analysis of nonlinear electrical circuits in terms of constant current by the Fletcher-Powell method. (Russian)  
    Kacnel'son, L. Z.; Kel'man, E. S.
    Latvian mathematical yearbook, 14 (Russian),  pp. 36--50. Izdat. "Zinatne", Riga, 1974, MathSciNet.  
  41. The multiplier method of Hestenes and Powell applied to convex programming.
    Rockafellar, R. T.
    J. Optimization Theory Appl. 12 (1973), 555--562, MathSciNet.  
  42. Computational schemes of the Davidon-Fletcher-Powell method in infinite-dimensional space.
    Oi, K.; Sayama, H.; Takamatsu, T.
    J. Optimization Theory Appl. 12 (1973), 447--458, MathSciNet.  
  43. A comparison of the static optimization methods of Powell (two methods) and Zangwill. (Polish)
    Studzi'nski, Jan
    Arch. Automat. i Telemech. 17 (1972), 503--512, MathSciNet.  
  44. A note on Powell's method for calculating orthogonal vectors.
    Osborne, M. R.
    Austral. Comput. J. 1 1969 216--218, MathSciNet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) John H. Mathews 2004