Muller’s Method

Muller’s method is a generalization of the secant method, in the sense that it does not require the derivative of the function. It is an iterative method that requires three starting points \((p_0, f(p_0)), (p_1, f(p_1)),\) and \((p_2, f(p_2))\). A parabola is constructed that passes through the three points; then the quadratic formula is used to find a root of the quadratic for the next approximation. It has been proved that near a simple root Muller’s method converges faster than the secant method and almost as fast as Newton’s method. The method can be used to find real or complex zeros of a function and can be programmed to use complex arithmetic.

Without loss of generality, we assume that \(p_2\) is the best approximation to the root and consider the parabola through the three starting values, shown in Figure 2.17. Make the change of variable

\[
(9) \quad t = x - p_2,
\]

and use the differences

\[
(10) \quad h_0 = p_0 - p_2 \quad \text{and} \quad h_1 = p_1 - p_2.
\]

Consider the quadratic polynomial involving the variable \(t\):

\[
(11) \quad y = at^2 + bt + c.
\]
Each point is used to obtain an equation involving \(a\), \(b\), and \(c\):

\[
\begin{align*}
\text{At } t = h_0: & \quad a h_0^2 + b h_0 + c = f_0, \\
\text{At } t = h_1: & \quad a h_1^2 + b h_1 + c = f_1, \\
\text{At } t = 0: & \quad a 0^2 + b 0 + c = f_2.
\end{align*}
\]

(12)

From the third equation in (12), we see that

\[
c = f_2.
\]

(13)

Substituting (13) into the first two equations in (12) and using the definition \(e_0 = f_0 - c\) and \(e_1 = f_1 - c\) results in the linear system

\[
\begin{align*}
ah_0^2 + b h_0 &= f_0 - c = e_0, \\
ah_1^2 + b h_1 &= f_1 - c = e_1.
\end{align*}
\]

(14)

Solving the linear system for \(a\) and \(b\) results in

\[
\begin{align*}
a &= \frac{e_0 h_1 - e_1 h_0}{h_1 h_0^2 - h_0 h_1^2}, \\
b &= \frac{e_1 h_0^2 - e_0 h_1^2}{h_1 h_0^2 - h_0 h_1^2}.
\end{align*}
\]

(15)

The quadratic formula is used to find the roots \(t = z_1, z_2\) of (11):

\[
z = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}.
\]

Formula (16) is equivalent to the standard formula for the roots of a quadratic and is better in this case because we know that \(c = f_2\).

To ensure the stability of the method, we choose the root in (16) that has the smallest absolute value. If \(b > 0\), use the positive sign with the square root, and if \(b < 0\), use the negative sign. Then \(p_3\) is shown in Figure 2.17 and is given by

\[
p_3 = p_2 + z.
\]

(17)

To update the iterates, choose the new \(p_0\) and the new \(p_1\) to be the two values selected from among the old \(\{p_0, p_1, p_3\}\) that lie closest to \(p_3\) (i.e., throw out the one that is farthest away). Then take new \(p_2\) to be old \(p_3\). Although a lot of auxiliary calculations are done in Muller’s method, it only requires one function evaluation per iteration.

If Muller’s method is used to find the real roots of \(f(x) = 0\), it is possible that one may encounter complex approximations, because the roots of the quadratic in (16) might be complex (nonzero imaginary components). In these cases the imaginary components will have a small magnitude and can be set equal to zero so that the calculations proceed with real numbers.
Table 2.12 Comparison of Convergences near a Simple Root

\[
\begin{array}{|c|c|c|c|c|}
\hline
k & \text{Secant method} & \text{Muller’s method} & \text{Newton’s method} & \text{Steffensen with Newton} \\
\hline
0 & -2.600000000 & -2.600000000 & -2.400000000 & -2.400000000 \\
1 & -2.400000000 & -2.500000000 & -2.076190476 & -2.076190476 \\
2 & -2.106598985 & -2.400000000 & -2.003596011 & -2.003596011 \\
3 & -2.022641412 & -1.985275287 & -2.000008589 & -1.982618143 \\
5 & -2.000022537 & -2.00000218 & -2.000000000 & -2.000000000 \\
6 & -2.000000022 & -2.000000000 & -2.000000000 & -2.000000000 \\
\hline
\end{array}
\]

Comparison of Methods

Steffensen’s method can be used together with the Newton-Raphson fixed-point function \(g(x) = x - f(x)/f'(x)\). In the next two examples we look at the roots of the polynomial \(f(x) = x^3 - 3x + 2\). The Newton-Raphson function is \(g(x) = (2x^3 - 2)/(3x^2 - 3)\). When this function is used in Program 2.7, we get the calculations under the heading Steffensen with Newton in Tables 2.12 and 2.13. For example, starting with \(p_0 = -2.4\), we would compute

\[
(18) \quad p_1 = g(p_0) = -2.076190476,
\]

and

\[
(19) \quad p_2 = g(p_1) = -2.003596011.
\]

Then Aitken’s improvement will give \(p_3 = -1.982618143\).

Example 2.19 (Convergence near a Simple Root). This is a comparison of methods for the function \(f(x) = x^3 - 3x + 2\) near the simple root \(p = -2\).

Newton’s method and the secant method for this function were given in Examples 2.14 and 2.16, respectively. Table 2.12 provides a summary of calculations for the methods.

Example 2.20 (Convergence near a Double Root). This is a comparison of the methods for the function \(f(x) = x^3 - 3x + 2\) near the double root \(p = 1\). Table 2.13 provides a summary of calculations.

Newton’s method is the best choice for finding a simple root (see Table 2.12). At a double root, either Muller’s method or Steffensen’s method with the Newton-Raphson formula is a good choice (see Table 2.13). Note in the Aitken’s acceleration formula (4) that division by zero can occur as the sequence \(\{p_k\}\) converges. In this case, the last calculated approximation to zero should be used as the approximation to the zero of \(f\).
Table 2.13 Comparison of Convergence Near a Double Root

<table>
<thead>
<tr>
<th>k</th>
<th>Secant method</th>
<th>Muller’s method</th>
<th>Newton’s method</th>
<th>Steffensen with Newton</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.40000000000</td>
<td>1.40000000000</td>
<td>1.20000000000</td>
<td>1.20000000000</td>
</tr>
<tr>
<td>1</td>
<td>1.20000000000</td>
<td>1.30000000000</td>
<td>1.10303030303</td>
<td>1.10303030303</td>
</tr>
<tr>
<td>2</td>
<td>1.138461538</td>
<td>1.20000000000</td>
<td>1.052356417</td>
<td>1.052356417</td>
</tr>
<tr>
<td>3</td>
<td>1.083873738</td>
<td>1.003076923</td>
<td>1.02640814</td>
<td>0.996890433</td>
</tr>
<tr>
<td>4</td>
<td>1.053093854</td>
<td>1.003838922</td>
<td>1.013257734</td>
<td>0.998446023</td>
</tr>
<tr>
<td>5</td>
<td>1.032853156</td>
<td>1.000027140</td>
<td>1.006643418</td>
<td>0.99923213</td>
</tr>
<tr>
<td>6</td>
<td>1.020429426</td>
<td>0.999997914</td>
<td>1.003325375</td>
<td>0.999999193</td>
</tr>
<tr>
<td>7</td>
<td>1.012648627</td>
<td>0.999999747</td>
<td>1.001663607</td>
<td>0.999999597</td>
</tr>
<tr>
<td>8</td>
<td>1.007382124</td>
<td>1.000000000</td>
<td>1.000832034</td>
<td>0.999999798</td>
</tr>
<tr>
<td>9</td>
<td>1.004844757</td>
<td>1.000416075</td>
<td>1.000416075</td>
<td>0.999999999</td>
</tr>
</tbody>
</table>

In the following program the sequence \(\{p_k\} \), generated by Steffensen’s method with the Newton-Raphson formula, is stored in a matrix \(Q \) that has max 1 rows and three columns. The first column of \(Q \) contains the initial approximation to the root, \(p_0 \), and the terms \(p_3, p_6, \ldots, p_{3k}, \ldots \) generated by Aitken’s acceleration method (4). The second and third columns of \(Q \) contain the terms generated by Newton’s method. The stopping criteria in the program are based on the difference between consecutive terms from the first column of \(Q \).