Internet Resources for Monte Carlo Integration

 

  1. Global Climate Modeling Project,  Introduction to Monte Carlo Simulation      
    Tom Huber, Physics Department, Gustavus Adolphus College, St. Peter, MN  
  2. Monte Carlo Method    
    Donald Brenner, North Carolina State University, Raleigh, NC  
  3. Monte Carlo Integration
    Eric Weisstein, MathWorld, Wolfram Research Inc., Champaign, IL  
  4. Quasi-Monte Carlo Integration  
    Eric Weisstein, MathWorld, Wolfram Research Inc., Champaign, IL  
  5. Monte Carlo Simulation for Statistical Physics, Review of Monte Carlo Integration     
    Paul Coddington, Northeast Parallel Architectures Center at Syracuse University,  Syracuse, NY   
  6. Why Monte Carlo Methods Are Best in Multidimensional Integrals     
    Geoffrey Fox, Northeast Parallel Architectures Center at Syracuse University, Syracuse, NY   
  7. Monte Carlo Method for Integrals  
    Juan Restrepo, Math. Dept., Univ. of Arizona, Tucson, AZ  
  8. Monte-Carlo Integration    
    Angus MacKinnon, Imperial College, London, U.K.   
  9. Monte-Carlo-Integration  
    Martin Luetgemeier,  Physik Dept., Universität Bielefeld, Germany
  10. Monte Carlo Methods    
    Rudolf K. Bock, Organisation Européenne pour la Recherche Nucléair (CERN), Geneva     
  11. Introduction to Monte Carlo Methods  
    Computational Science Education Project, U.S. Department of Energy   
  12. Monte Carlo Surface to Surface Particle Transport  
    Computational Science Education Project, U.S. Department of Energy   
  13. Monte Carlo Methods in Parallel Computing     
    Chuanyi Ding; Eric Haskin,University of New Mexico, Albuquerque, NM
  14. Quasi-Monte Carlo Integration  
    Csébfalvi Balázs, Department of Control Engineering, Technical University of Budapest, Hungary
  15. Monte Carlo Integration     
    Geoffrey Fox, Northeast Parallel Architectures Center, Syracuse University, Syracuse, NY    
  16. Monte Carlo Integration  
    Everett F. Carter Jr., Taygeta Scientific Inc., Monterey, CA   
  17. Monte-Carlo-Integration  
    Martin Luetgemeier, Theoretische Physik, Universität Bielefeld, Germany
  18. Monte Carlo Integration  
    Daniel Ellard,  Electrical Engr. & Computer Science, Harvard University, Cambridge, MA
  19. Quasi-Monte Carlo Integration  
    Csébfalvi Balázs, Control Engineering and Information Technology, Technical University of Budapest  
  20. Monte-Carlo Techniques   
    Rubin H. Landau, Undergraduate Computational Engineering and Sciences (UCES) Project, Krell Institute
  21. Monte-Carlo Techniques   
    Rubin H. Landau, Physics Dept., Oregon State University, Corvallis, OR
  22. Monte Carlo Integration  
    Pat Hanrahan, Stanford Computer Graphics Laboratory, Stanford University, CA  
  23. Basics of Monte Carlo Simulations   
    Joy Woller, Chemistry Dept., University of Nebraska-Lincoln, NE  
  24. Monte Carlo Methods and Simulation  
    Angus MacKinnon, Condensed Matter Theory Group, Imperial College London, UK
  25. Introduction to Monte Carlo Simulation   
    Karl Hess; Umberto Ravaioli, National Center for Computational Electronics, Univ. of Illinois at Urbana-Champaign
  26. Random Walks, Markov Chains and the Monte Carlo Method  
    Everett F. Carter, Taygeta Scientific Inc., Monterey, CA
  27. Introduction to Monte Carlo Methods   
    Stefan Weinzierl, Research School Subatomic Physics, Amsterdam
  28. Monte Carlo Integration  
    Joan Adler, Computational Physics, Israel Institute of Technology, Israel  
  29. Monte Carlo Methods - Integration
    Statistical and Data Services, Brighton Webs Ltd., Brighton BN1 5BX, England
  30. Monte Carlo simulation and numerical integration  
    John Geweke, WoPEc: Working Papers in Economics, Manchester Computing, UK
  31. Monte Carlo Integration  
    André Jaun,  NADA,  Royal Institute of Technology, Stockholm, Sweden
  32. Monte Carlo Methods in Radiation  
    Ezra Takara, Dept. of Meteorology, University of Maryland, College Park, MD
  33. Monte Carlo Algorithms and "Random'' Numbers  
    Computational Science Education Project, U.S. Department of Energy   
  34. Random Number Generators  
    Computational Science Education Project, U.S. Department of Energy   
  35. Monte Carlo Methods PDF  
    Nando de Freitas, Computer Science Dept., Univ. of British Columbia, Vancouver, B.C. Canada
  36. Monte Carlo Integration: an Overview with Examples PDF  
    Edwin Miles Stoudenmire, Math. Dept., Georgia Tech., Atlanta, GA  
  37. Numerical Integration and Monte Carlo Methods PDF  
    Harvey Gould; Jan Tobochnik; Wolfgang Christian, Physics Dept., Clark Univ., Worcester, MA
  38. Monte-Carlo integration PDF  
    Marianne Månsson, Mathematical Statistics, Chalmers Univ. of Technology and Göteborg Univ., Sweden
  39. Integration using Monte Carlo Approximation  
    Ryan Young; Philip S. Brown, Math. Dept., Trinity College, Hartford, CT
  40. Monte Carlo Integration applet  
    Michael Mascagni; Li Yaohang, Scientific Computing, Univ. of Southern Mississippi, Hattiesburg, MS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) John H. Mathews 2005