Bibliography for the Mean Value Theorem

short

  1. Type, fixed point iteration, and mean value theorems  
    Mercer, Peter R.  
    Internat. J. Math. Ed. Sci. Tech. 32 (2001), no. 2, 308--312, Math. Sci. Net.  
  2. The mean value theorem of Lagrange generalised to involve two functions  
    Tong, J.  
    Mathematical Gazette, 2000, vol. 84, no. 501, pp. 515, Ingenta.  
  3. The mean value theorems of Lagrange and Cauchy. II  
    Tong, Jingcheng
    Internat. J. Math. Ed. Sci. Tech. 31 (2000), no. 3, 447--449, Math. Sci. Net.  
  4. A Mean Value Theorem  
    Tokieda, Tadashi F.  
    The american mathematical monthly, 1999, vol. 106, no. 7, pp. 673, Ingenta.   
  5. More on a mean value theorem converse  
    Fejzi, H.; Rinne, D.  
    Amer. Math. Monthly 106 (1999), no. 5, 454--455, Math. Sci. Net.  
  6. A physically motivated further note on the mean value theorem for integrals  
    Schwind, William J.; Ji, Jun; Koditschek, Daniel E.  
    Amer. Math. Monthly 106 (1999), no. 6, 559--564, Math. Sci. Net.  
  7. The mean value theorems of Lagrange and Cauchy  
    Tong, Jingcheng  
    Internat. J. Math. Ed. Sci. Tech. 30 (1999), no. 3, 456--458, Math. Sci. Net.  
  8. Flett's mean value theorem for holomorphic functions  
    Davitt, R. M.; Powers, R. C.; Riedel, T.; Sahoo, P. K.
    Math. Mag. 72 (1999), no. 4, 304--307, Math. Sci. Net.  
  9. A converse of the mean value theorem  
    Tong, Jingcheng; Braza, Peter A.  
    Amer. Math. Monthly 104 (1997), no. 10, 939--942, Math. Sci. Net.  
  10. A note on the mean value theorem for integrals  
    Zhang, Bao-lin  
    Amer. Math. Monthly 104 (1997), no. 6, 561--562, Math. Sci. Net.  
  11. Rethinking rigor in calculus: the role of the mean value theorem  
    Tucker, Thomas W.  
    Amer. Math. Monthly 104 (1997), no. 3, 231--240, Math. Sci. Net.  
  12. A Cauchy's mean value theorem for complex functions  
    Száz, Árpád
    Math. Student 64 (1995), no. 1-4, 125--127 (1996), Math. Sci. Net.  
  13. On the Mean Value Theorem, Inequality, and Inclusion (in The Teaching of Mathematics)  
    M. Furi, M. Martelli  
    American Mathematical Monthly, Vol. 98, No. 9. (Nov., 1991), pp. 840-846, Jstor.  
  14. A Topological Mean Value Theorem for the Plane (in The Teaching of Mathematics)  
    Ira Rosenholtz  
    American Mathematical Monthly, Vol. 98, No. 2. (Feb., 1991), pp. 149-154, Jstor.  
  15. Some Remarks on the Stability of a Property Related to the Mean Value Theorem for Harmonic Functions  
    Burton Randol  
    Proceedings of the American Mathematical Society, Vol. 114, No. 1. (Jan., 1992), pp. 175-179, Jstor.  
  16. More Applications of the Mean Value Theorem  
    Schaumberger, Norman  
    Pi mu epsilon journal, 1990, vol. 9, no. 2, pp. 113, Ingenta.  
  17. Errata, addenda: On the Mean Value Theorem for Integrals (in Notes)  
    American Mathematical Monthly, Vol. 97, No. 5. (May, 1990), p. 412, Jstor.  
  18. A Lattice Summation Using the Mean Value Theorem for Harmonic Functions (in Classroom Notes in Applied Mathematics)  
    Paul K. Mazaika  
    SIAM Review, Vol. 26, No. 1. (Jan., 1984), pp. 113-115, Jstor.  
  19. On the Mean Value Theorem for Integrals (in Notes)  
    Bernard Jacobson
    American Mathematical Monthly, Vol. 89, No. 5. (May, 1982), pp. 300-301, Jstor.  
  20. Generalizing the Generalized Mean-Value Theorem (in Classroom Notes)  
    Alexander Abian  
    American Mathematical Monthly, Vol. 88, No. 7. (Aug. - Sep., 1981), pp. 528-530, Jstor.  
  21. A Strong Converse to Gauss's Mean-Value Theorem (in Classroom Notes)  
    R. B. Burckel  
    American Mathematical Monthly, Vol. 87, No. 10. (Dec., 1980), pp. 819-820, Jstor.  
  22. A Mean Value Theorem for Linear Functionals  
    D. Meek  
    Mathematics of Computation, Vol. 35, No. 151. (Jul., 1980), pp. 797-802, Jstor.  
  23. Application of a Mean Value Theorem for Integrals to Series Summation (in Mathematical Notes)  
    Eberhard L. Stark  
    American Mathematical Monthly, Vol. 85, No. 6. (Jun. - Jul., 1978), pp. 481-483, Jstor.  
  24. A Converse to the Mean Value Theorem for Harmonic Functions  
    William A. Veech  
    American Journal of Mathematics, Vol. 97, No. 4. (Winter, 1975), pp. 1007-1027, Jstor.  
  25. A Zero-One Law for a Class of Random Walks and a Converse to Gauss' Mean Value Theorem  
    William A. Veech  
    The Annals of Mathematics, 2nd Ser., Vol. 97, No. 2. (Mar., 1973), pp. 189-216, pp. 45-46, Jstor.  
  26. A Local Mean Value Theorem for Analytic Function (in Mathematical Notes)  
    Ake Samuelsson  
    American Mathematical Monthly, Vol. 80, No. 1. (Jan., 1973), pp. 45-46, Jstor.  
  27. A Versatile Vector Mean Value Theorem (in Classroom Notes)  
    D. E. Sanderson  
    American Mathematical Monthly, Vol. 79, No. 4. (Apr., 1972), pp. 381-383, Jstor.  
  28. A Note on the Mean Value Theorem (in Mathematical Notes)
    A. A. Goldstein
    American Mathematical Monthly, Vol. 79, No. 1. (Jan., 1972), pp. 51-53, Jstor.  
  29. A Mean Value Theorem (in Mathematical Notes)  
    R. J. Easton, S. G. Wayment  
    American Mathematical Monthly, Vol. 77, No. 2. (Feb., 1970), pp. 170-172, Jstor.  
  30. Integration, Anti-Differentiation and a Converse to the Mean Value Theorem (in Classroom Notes)  
    Howard Levi  
    American Mathematical Monthly, Vol. 74, No. 5. (May, 1967), pp. 585-586, Jstor.  
  31. On Avoiding the Mean Value Theorem (in Classroom Notes)  
    Lipman Bers  
    American Mathematical Monthly, Vol. 74, No. 5. (May, 1967), p. 583, Jstor.  
  32. On Being Mean to the Mean Value Theorem (in Classroom Notes)  
    Leon W. Cohen  
    American Mathematical Monthly, Vol. 74, No. 5. (May, 1967), pp. 581-582, Jstor.  
  33. A Mean Value Theorem-An Extension (in Mathematical Notes)  
    T. V. Lakshminarasimhan  
    American Mathematical Monthly, Vol. 73, No. 8. (Oct., 1966), pp. 862-863, Jstor.  
  34. Mean Value Theorem for Polyharmonic Functions  
    J. H. Bramble, L. E. Payne  
    American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in Analysis. (Apr., 1966), pp. 124-127, Jstor.  
  35. A Mean Value Theorem for the Heat Equation  
    W. Fulks  
    Proceedings of the American Mathematical Society, Vol. 17, No. 1. (Feb., 1966), pp. 6-11, Jstor.  
  36. An N-Th Order Second Mean Value Theorem (in Classroom Notes)  
    Donald H. Trahan  
    American Mathematical Monthly, Vol. 72, No. 3. (Mar., 1965), pp. 300-301, Jstor.  
  37. A Mean Value Theorem for an Arbitrary Steady-State Thermoelastic Problem for a Solid Sphere  
    J. L. Nowinski  
    Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 3. (Sep., 1963), pp. 623-631, Jstor.  
  38. A Natural Auxiliary Function for the Mean Value Theorem (in Classroom Notes)  
    M. J. Poliferno  
    American Mathematical Monthly, Vol. 69, No. 1. (Jan., 1962), pp. 45-47, Jstor.  
  39. Sequences Generated by Use of the Mean Value Theorem (in Classroom Notes)  
    Jacqueline P. Evans  
    American Mathematical Monthly, Vol. 68, No. 4. (Apr., 1961), p. 365, Jstor.  
  40. Proof of the Mean Value Theorem (in Classroom Notes)  
    Chung Lie Wang  
    American Mathematical Monthly, Vol. 65, No. 5. (May, 1958), pp. 362-364, Jstor.  
  41. An Application of the Mean Value Theorem (in Classroom Notes)  
    David Zeitlin  
    American Mathematical Monthly, Vol. 64, No. 6. (Jun. - Jul., 1957), p. 427, Jstor.  
  42. On an Application of the Mean Value Theorem (in Classroom Notes)  
    K. A. Bush  
    American Mathematical Monthly, Vol. 62, No. 8. (Oct., 1955), pp. 577-578, Jstor.  
  43. A Proof of the Invariant Mean-Value Theorem on Almost Periodic Functions  
    Hukukane Nikaido  
    Proceedings of the American Mathematical Society, Vol. 6, No. 3. (Jun., 1955), pp. 361-363, Jstor.  
  44. Some Inequalities Arising From a Generalized Mean Value Theorem  
    M. P. Drazin  
    American Mathematical Monthly, Vol. 62, No. 4. (Apr., 1955), pp. 226-232, Jstor.  
  45. Proof of the First Mean Value Theorem of the Integral Calculus (in Classroom Notes)  
    T. Putney  
    American Mathematical Monthly, Vol. 60, No. 2. (Feb., 1953), pp. 113-114, Jstor.  
  46. A Mean Value Theorem in Geometry of Numbers  
    Carl Ludwig Siegel  
    The Annals of Mathematics, 2nd Ser., Vol. 46, No. 2. (Apr., 1945), pp. 340-347, Jstor.  
  47. On the Mean Value Theorem (in Questions, Discussions and Notes)  
    H. L. Krall  
    American Mathematical Monthly, Vol. 42, No. 10. (Dec., 1935), pp. 604-606, Jstor.  
  48. A General Mean-Value Theorem  
    D. V. Widder  
    Transactions of the American Mathematical Society, Vol. 26, No. 3. (Jul., 1924), pp. 385-394, Jstor.  
  49. On the Mean-Value Theorem Corresponding to a Given Linear Homogeneous Differential Equations  
    G. Polya  
    Transactions of the American Mathematical Society, Vol. 24, No. 4. (Dec., 1922), pp. 312-324, Jstor.  

 

 

 

 

 

 

 

 

 

 

 

 

(c) John H. Mathews 2003