We now state two important corollaries of Theorem 6.12.

Corollary 6.2 If \(f \) is analytic in the domain \(D \), then, for integers \(n \geq 0 \), all derivatives \(f^{(n)}(z) \) exist for \(z \in D \) (and therefore are analytic in \(D \)).

Proof For each point \(z_0 \) in \(D \), there exists a closed disk \(|z - z_0| \leq R \) that is contained in \(D \). We use the circle \(C = C_R(z_0) = \{ z : |z - z_0| = R \} \) in Theorem 6.12 to show that \(f^{(n)}(z_0) \) exists for all integers \(n \geq 0 \).

Remark 6.3 This result is interesting, as it illustrates a big difference between real and complex functions. A real function \(f \) can have the property that \(f' \) exists everywhere in a domain \(D \), but \(f'' \) exists nowhere. Corollary 6.2 states that if a complex function \(f \) has the property that \(f' \) exists everywhere in a domain \(D \), then, remarkably, all derivatives of \(f \) exist in \(D \).

Corollary 6.3 If \(u \) is a harmonic function at each point \((x, y) \) in the domain \(D \), then all partial derivatives \(u_x, u_y, u_{xx}, u_{xy}, \) and \(u_{yy} \) exist and are harmonic functions.

Proof For each point \(z_0 = (x_0, y_0) \) in \(D \) there exists a disk \(D_R(z_0) \) that is contained in \(D \). In this disk, a conjugate harmonic function \(v \) exists, so the function \(f(z) = u + iv \) is analytic. We use the Cauchy–Riemann equations to get \(f'(z) = u_x + iv_x = v_y - iu_y \), for \(z \in D_R(z_0) \). Since \(f' \) is analytic in \(D_R(z_0) \), the functions \(u_x \) and \(u_y \) are harmonic there. Again, we can use the Cauchy–Riemann equations to obtain, for \(z \in D_R(z_0) \),

\[
f''(z) = u_{xx} + iv_{xx} = v_{yy} - iu_{yy} = -u_{yy} - iv_{yy}.
\]

Because \(f'' \) is analytic in \(D_R(z_0) \), the functions \(u_{xx}, u_{xy}, \) and \(u_{yy} \) are harmonic there.