12.2 THE DIRICHLET PROBLEM FOR THE UNIT DISK

The Dirichlet problem for the unit disk \(D : |z| < 1 \) is to find a real-valued function \(u(x, y) \) that is harmonic in the unit disk \(D \) and that takes on the boundary values

\[
u(\cos \theta, \sin \theta) = U(\theta), \quad \text{for } -\pi < \theta \leq \pi, \tag{12-10}\]

at points \(z = (\cos \theta, \sin \theta) \) on the unit circle, as shown in Figure 12.12.

\[\blacktriangleright\textbf{Theorem 12.7} \quad \text{If } U(t) \text{ has period } 2\pi \text{ and has the Fourier series representation}
\]

\[
U(t) = \frac{a_0}{2} + \sum_{j=1}^{\infty} \left(a_j \cos jt + b_j \sin jt \right),
\]

\[\text{then the solution } u \text{ to the Dirichlet problem in } D \text{ is}
\]

\[
u(r \cos \theta, r \sin \theta) = \frac{a_0}{2} + \sum_{j=1}^{\infty} \left(a_j r^j \cos j\theta + b_j r^j \sin j\theta \right), \tag{12-11}\]

\[\text{where } z = x + iy = re^{i\theta} \text{ denotes a complex number in the closed disk } |z| \leq 1.\]

The series representation in Equation (12-11) for \(u \) takes on the prescribed boundary values in Equation (12-10) at points on the unit circle \(|z| = 1 \). Each
Theorem 12.8 (Poisson integral formula for the unit disk) Let \(u(x, y) \) be a function that is harmonic in a simply connected domain that contains the closed unit disk \(|z| \leq 1\). If \(u(x, y) \) takes on the boundary values

\[
 u(\cos \theta, \sin \theta) = U(\theta), \quad \text{for } -\pi < \theta \leq \pi,
\]

then \(u \) has the integral representation

\[
 u(r \cos \theta, r \sin \theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(1 - r^2) U(t) dt}{1 + r^2 - 2r \cos(t - \theta)},
\] \hspace{1cm} (12-12)

which is valid for \(|z| < 1\).

Proof Since \(u(x, y) \) is harmonic in the simply connected domain, there exists a conjugate harmonic function \(v(x, y) \) such that \(f(z) = u(x, y) + iv(x, y) \) is
analytic. Let \(C \) denote the contour consisting of the unit circle; then Cauchy’s integral formula

\[
f (z) = \frac{1}{2\pi i} \int_C \frac{f (\xi)}{\xi - z} \quad (12-13)
\]

expresses the value of \(f (z) \) at any point \(z \) inside \(C \) in terms of the values of \(f (\xi) \) at points \(\xi \) that lie on the circle \(C \).

If we set \(z^* = (\pi)^{-1} \), then \(z^* \) lies outside the unit circle \(C \) and the Cauchy–Goursat theorem establishes the equation

\[
0 = \frac{1}{2\pi i} \int_C \frac{f (\xi)}{\xi - z^*} \quad (12-14)
\]

Subtracting Equation (12-14) from Equation (12-13) and using the parameterization \(\xi = e^{it} \), \(d\xi = ie^{it} dt \) and the substitutions \(z = re^{i\theta} \), \(z^* = \frac{1}{r}e^{i\theta} \) gives

\[
f (z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{e^{it}}{e^{it} - re^{i\theta}} - \frac{e^{it}}{e^{it} - \frac{1}{r}e^{i\theta}} \right) f (e^{it}) \, dt.
\]

We rewrite the expression inside the parentheses on the right side of this equation as

\[
\frac{e^{it}}{e^{it} - re^{i\theta}} - \frac{e^{it}}{e^{it} - \frac{1}{r}e^{i\theta}} = \frac{1}{1 - re^{i(\theta-t)}} + \frac{re^{i(t-\theta)}}{1 - re^{i(\theta-t)}}
\]

\[
= \frac{1 - r^2}{1 + r^2 - 2r \cos(t - \theta)},
\]

and it follows that

\[
f (z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - r^2}{1 + r^2 - 2r \cos(t - \theta)} f (e^{it}) \, dt.
\]

Because \(u(x,y) \) is the real part of \(f (z) \) and \(U(t) \) is the real part of \(f (e^{it}) \), we can equate the real parts in the preceding equation to obtain Equation (12-12), completing the proof of Theorem 12.8.

We now turn to the proof Theorem 12.7. The real-valued function

\[
P (r, t - \theta) = \frac{1 - r^2}{1 + r^2 - 2r \cos(t - \theta)}
\]
is known as the **Poisson kernel**. Expanding the left side of Equation (12-15) in a geometric series gives

\[
P(r, t - \theta) = \frac{1}{1 - re^{i(\theta - t)}} + \frac{re^{i(t - \theta)}}{1 - re^{i(\theta - t)}} = \sum_{n=0}^{\infty} r^n e^{in(\theta - t)} + \sum_{n=1}^{\infty} r^n e^{in(t - \theta)}
\]

\[
= 1 + \sum_{n=1}^{\infty} r^n \left[e^{in(\theta - t)} + e^{in(t - \theta)} \right] = 1 + 2 \sum_{n=1}^{\infty} r^n \cos[n(\theta - t)]
\]

\[
= 1 + 2 \sum_{n=1}^{\infty} r^n \cos n\theta \cos nt + 2 \sum_{n=1}^{\infty} r^n \sin n\theta \sin nt.
\]

We now use this result in Equation (12-12) to obtain

\[
u(r \cos \theta, r \sin \theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, t - \theta) U(t) \, dt
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} U(t) \, dt + \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} r^n \cos n\theta \cos nt \, U(t) \, dt
\]

\[
+ \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} r^n \sin n\theta \cos nt \, U(t) \, dt
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} U(t) \, dt + \sum_{n=1}^{\infty} \frac{r^n}{\pi} \cos n\theta \int_{-\pi}^{\pi} \cos nt \, U(t) \, dt
\]

\[
+ \sum_{n=1}^{\infty} \frac{r^n}{\pi} \sin n\theta \int_{-\pi}^{\pi} \sin nt \, U(t) \, dt
\]

\[
= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n r^n \cos n\theta + \sum_{n=1}^{\infty} b_n r^n \sin n\theta,
\]

where \(\{a_n\}\) and \(\{b_n\}\) are the Fourier series coefficients for \(U(t)\). This result establishes the representation for \(u(r \cos \theta, r \sin \theta)\) in Equation (12-11) of Theorem 12.7.