Theorem 6.4 (Green’s theorem) Let C be a simple closed contour with positive orientation and let R be the domain that forms the interior of C. If P and Q are continuous and have continuous partial derivatives P_x, P_y, Q_x, and Q_y at all points on C and R, then

$$\int_C P(x,y) \, dx + Q(x,y) \, dy = \iint_R \left[Q_x(x,y) - P_y(x,y) \right] \, dx \, dy. \quad (6-25)$$

Proof (For a standard region.*) If R is a standard region, then there exist functions $y = g_1(x)$, and $y = g_2(x)$, for $a \leq x \leq b$, whose graphs form the lower and upper portions of C, respectively, as indicated in Figure 6.18. As C is positively oriented, these functions can be used to express C as the sum of two contours C_1 and C_2, where

$C_1 : z_1(t) = t + ig_1(t), \quad$ for $a \leq t \leq b$, and

$C_2 : z_2(t) = -t + ig_2(-t), \quad$ for $-b \leq t \leq -a$.

We now use the functions $g_1(x)$ and $g_2(x)$ to express the double integral of $-P_y(x,y)$ over R as an iterated integral, first with respect to y and second with respect to x:

$$-\iint_R P_y(x,y) \, dx \, dy = -\int_a^b \left[\int_{g_1(x)}^{g_2(x)} P_y(x,y) \, dy \right] \, dx.$$

Computing the first iterated integral on the right side gives

$$-\iint_R P_y(x,y) \, dx \, dy = \int_a^b P(x,g_1(x)) \, dx - \int_a^b P(x,g_2(x)) \, dx.$$

In the second integral on the right side of this equation we can use the change of variable $x = -t$ to obtain

$$-\iint_R P_y(x,y) \, dx \, dy = \int_a^b P(x,g_1(x)) \, dx + \int_{-b}^{-a} P(-t,g_2(-t)) \, dt.$$

Interpreting the two integrals on the right side of this equation as contour integrals along C_1 and C_2, respectively, gives

$$-\iint_R P_y(x,y) \, dx \, dy = \int_{C_1} P(x,y) \, dx + \int_{C_2} P(x,y) \, dx = \int_C P(x,y) \, dx.$$

(6-26)

* A standard region is bounded by a contour C, which can be expressed in the two forms $C = C_1 + C_2$ and $C = C_3 + C_4$ that are used in the proof.
To complete the proof, we rely on the fact that for a standard region there exist functions \(x = h_1 (y) \) and \(x = h_2 (y) \) for \(c \leq y \leq d \) whose graphs form the left and right portions of \(C \), respectively, as indicated in Figure 6.19. Because \(C \) has the positive orientation, it can be expressed as the sum of two contours \(C_3 \) and \(C_4 \), where

\[
C_3 : z_3 (t) = h_1 (-t) - it, \quad \text{for} \quad -d \leq t \leq -c, \quad \text{and} \\
C_4 : z_4 (t) = h_2 (t) + it, \quad \text{for} \quad c \leq t \leq d.
\]

Using the functions \(h_1 (y) \) and \(h_2 (y) \), we express the double integral of \(Q_x (x,y) \) over \(R \) as an iterated integral:

\[
\int\int_R Q_x (x,y) \, dx \, dy = \int_c^d \left[\int_{h_1 (y)}^{h_2 (y)} Q_x (x,y) \, dx \right] \, dy.
\]

A derivation similar to that which led to Equation (6-26) shows that

\[
\int\int_R Q_x (x,y) \, dx \, dy = \int_C Q (x,y) \, dy. \quad (6-27)
\]

Adding Equations (6-26) and (6-27) gives us Equation (6-25), which completes the proof.
Figure 6.19 Integration over a standard region, where $C = C_3 + C_4$.