![]()
![]()
for
11.9 The Schwarz-Christoffel Transformation
In Section
10.4 we mentioned the Riemann mapping theorem: If
D is any simply connected domain in
the plane (other than the entire plane itself), then there exists a
one-to-one conformal mapping
that
maps D onto the unit
disk
. The
Mobius transformation
is a one-to-one conformal mapping of the unit
disk
onto
the upper half-plane
,
and the inverse is
. Hence
the Riemann mapping theorem could have been stated: If
D is any simply connected domain in
the w-plane, then there exists a
one-to-one conformal mapping
that
maps the upper half-plane
onto D. In this section we
will introduce the Schwarz-Christoffel formula for constructing a
conformal mapping from the upper half plane onto a region
G bounded by a polygonal
curve. At the end of this section we will introduce the
remarkable mappings of the unit disk onto an equilateral triangle and
a square.
![[Graphics:Images/SchwarzChristoffelMod_gr_9.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_9.gif)
To proceed further, we must review the
rotational effect of a conformal mapping
at a point
. If
the contour C has the
parameterization
, then
a vector
tangent to C at the point
is
.
The image of C is a contour
K given by
, and
a vector T tangent to K
at the point
is
.
If the angle of inclination of
is
, then
the angle of inclination of T
is
.
Hence the angle of inclination of the tangent
to
C at
is rotated through the angle
to
obtain the angle of inclination of the tangent T
to K at the point
.
Many applications involving conformal
mappings require the construction of a one-to-one conformal mapping
from the upper half plane
onto
a domain G in the w-plane
where the boundary consists of straight line
segments. Let's consider the case where G
is the interior of a polygon P with
vertices
specified
in the positive sense (counterclockwise). We want to find
a function
with
the property
(11-38)
, and ![]()
where
.
Two German mathematicians Herman
Amandus Schwarz (1843-1921) and Elwin
Bruno Christoffel (1829-1900) independently discovered
a method for finding f, and that is our next theorem.
Theorem 11.6 (Schwarz-Christoffel
Formula). Let
P be a polygon in the w
plane with vertices
and
exterior angles
, where
. There
exists a one-to-one conformal mapping
from
the upper half plane
onto
G that satisfies the boundary
conditions
The derivative
is
(11-39)
and the function
can be expressed as an indefinite integral,
(11-40) ![]()
where A and B
are suitably chosen constants. Two of the
points
may
be chosen arbitrarily, and the constants A
and B determine the size and position
of P.
![]()
Figure 11.70 A Schwarz-Christoffel mapping with
and
.
Figure 11.71 A Schwarz-Christoffel mapping with
and
Proof of Theorem 11.6 is in the book.
Complex
Analysis for Mathematics and Engineering
Equation (11-40) gives a representation for f in terms of an indefinite integral. Note that these integrals do not represent elementary functions unless the image is an infinite region. Also, the integral will involve a multivalued function, and we must select a specific branch to fit the boundary values specified in the problem. Table 11.2 is useful for our purposes.
The following table of integrals is useful for hand computations and are compatible with the versions used in the textbook. Occasionally they have been adjusted by a constant of integration which could be changed for indefinite integrands. Also, depending on which quadrant you use it might be necessary to use various combinations of the branches of the multivalued terms.
![[Graphics:Images/SchwarzChristoffelMod_gr_47.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_47.gif)
![[Graphics:Images/SchwarzChristoffelMod_gr_48.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_48.gif)
![[Graphics:Images/SchwarzChristoffelMod_gr_49.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_49.gif)
![[Graphics:Images/SchwarzChristoffelMod_gr_50.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_50.gif)
![[Graphics:Images/SchwarzChristoffelMod_gr_51.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_51.gif)
Table 11.2 Indefinite integrals.
Example 11.26. Use
the Schwarz-Christoffel formula to verify that
maps
the upper half plane
onto
the semi infinite strip
shown
in Figure 11.72.
![[Graphics:Images/SchwarzChristoffelMod_gr_77.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_77.gif)

Figure 11.72 The region withand
.
Solution. If we choose
, and
, then
the exterior angles are
, and
Equation (11-39) for
becomes
![[Graphics:Images/SchwarzChristoffelMod_gr_84.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_84.gif)
Then, using Table 11.2, the indefinite integral becomes
Using the image values
and
,
we obtain the system
![[Graphics:Images/SchwarzChristoffelMod_gr_88.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_88.gif)
and simplifies to be
![[Graphics:Images/SchwarzChristoffelMod_gr_89.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_89.gif)
which we can solve to obtain
. Hence
the required function is
Example 11.27. Use
the Schwarz Christoffel formula to verify that
maps
the upper half plane
onto
the upper half plane
slit
along the line segment from
.
(Use the principal square root throughout.)
Solution. If we choose
and
, then
the formula
![[Graphics:Images/SchwarzChristoffelMod_gr_112.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_112.gif)
will determine a mapping
from the upper half-plane
onto
the portion of the upper half-plane
that
lies outside the triangle with vertices
as
indicated in Figure 11.73(a). If we let
, then
,
and
.
![]()
Figure 11.73 The region with
and
.
The limiting formula for the derivative
becomes
![[Graphics:Images/SchwarzChristoffelMod_gr_124.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_124.gif)
which will determine a mapping
from the upper half-plane
onto
the upper half plane
slit
along the line segment from
as indicated in Figure 11.73(b). An easy integration
reveals that
is given by
and the boundary values
lead
to system of equations
and ![]()
the solution is easily found to be
and the desired function is
.
Example 11.28. Show
that
maps
the upper half plane
onto
the right angle channel in the first quadrant, which is bounded by
the coordinate axes and the rays
,
as depicted in Figure 11.74(b).
Solution. If we choose
and
, then
the formula
![[Graphics:Images/SchwarzChristoffelMod_gr_155.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_155.gif)
will determine a mapping
of the upper half-plane onto the domain indicated in Figure
11.74(a). With
, we
let
, then
and
.
![[Graphics:Images/SchwarzChristoffelMod_gr_161.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_161.gif)

Figure 11.74 The region withand
.
The limiting formula for the derivative
becomes
![[Graphics:Images/SchwarzChristoffelMod_gr_165.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_165.gif)
where
,
which will determine a mapping
from the upper half plane onto the channel as indicated in Figure
11.74(b).
Using integrals in Table 11.2, we
obtain
If we use the principal branch of the
inverse sine function, then the boundary values
lead
to the system
and
,
which we can solve to obtain
. Hence
the required solution is
Extra Example
1. Show that
maps
the upper half-plane onto the domain indicated in Figure
11.77.
Hint: Set
and
.
![[Graphics:Images/SchwarzChristoffelMod_gr_190.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_190.gif)

Figure 11.77 The region withand
.
Solution. The exterior angles are
, and
the formula for the derivative
is

integrate and get
![]()
use the conditions
and
and
solve the resulting system for A and
B. The desired result
is
.
Extra Example
2. Show that
maps
the upper half-plane onto the domain indicated in Figure
11.78.
Hint: Set
and ![]()
![[Graphics:Images/SchwarzChristoffelMod_gr_213.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_213.gif)

Figure 11.78 The region withand
.
Solution. The exterior angles are
, and
the formula for the derivative
is
integrate and get
![]()
use the conditions
and
and
solve the resulting system for A and
B. The desired result
is
.
Extra Example
3. Show that
maps
the upper half-plane onto the domain indicated in Figure
11.84.
Hint: Set
and
. Use
the change of variable
in
the resulting integral.
![[Graphics:Images/SchwarzChristoffelMod_gr_237.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_237.gif)

Figure 11.84 The region withand
.
Solution. The exterior angles are
, and
the formula for the derivative
is
integrate
![]()
use the substitutions
and get
Use the identity
and
write the integral as
![]()
Now use the substitution
and get
![[Graphics:Images/SchwarzChristoffelMod_gr_249.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_249.gif)
use the conditions
,
and
solve the resulting system for A and
B. The desired result
is
.
Extra Example
4. Show that
maps
the upper half-plane onto the domain indicated in Figure
11.85.
Hint: Set
and
.
![[Graphics:Images/SchwarzChristoffelMod_gr_269.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_269.gif)

Figure 11.85 The region withand
.
Solution. The exterior angles are
, and
the formula for the derivative
is
![[Graphics:Images/SchwarzChristoffelMod_gr_274.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_274.gif)
integrate and get
![]()
use the conditions
,
and
solve the resulting system for A and
B. The desired result
is
.
Extra Example
5. Use the Schwarz Christoffel formula to show
that
will
map the upper-half-plane onto an equilateral triangle.
Hint: For convenience we have chosen
.
![[Graphics:Images/SchwarzChristoffelMod_gr_291.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_291.gif)
Solution. The exterior angles of an equilateral
triangle are
, and
the formula for the derivative
is
![[Graphics:Images/SchwarzChristoffelMod_gr_294.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_294.gif)
integrate and get
![]()
Extra Example
6. Use the Schwarz Christoffel formula to show
that
will
map the upper-half-plane onto a square.
Hint: For convenience we have chosen
.
![[Graphics:Images/SchwarzChristoffelMod_gr_316.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_316.gif)
Solution. The exterior angles of a square
are
, and
the formula for the derivative
is
![[Graphics:Images/SchwarzChristoffelMod_gr_319.gif]](schwarzchristoffel/SchwarzChristoffelMod/Images/SchwarzChristoffelMod_gr_319.gif)
integrate and get
Exercises for Section 11.9. The Schwarz-Christoffel Transformation
Schwarz-Christoffel Transformation
The Next Module is
Return to the Complex Analysis Modules
Return to the Complex Analysis Project
This material is coordinated with our book Complex Analysis for Mathematics and Engineering.
(c) 2012 John H. Mathews, Russell W. Howell