Module

for

The Fundamental Theorem of Algebra

 

6.7 The Fundamental Theorem of Algebra

    This section is a supplement to the textbook.

 

    In Section 6.6 we developed the background (Theorems 6.13 - 6.18) for the proof of the Fundamental Theorem of Algebra.

 

Theorem 6.13 (Morera's Theorem).  Let f(z) be a continuous function in a simply connected domain D.  If  [Graphics:Images/FunTheoremAlgebraMod_gr_1.gif]  for every closed contour in D, then f(z) is analytic in D.

Theorem 6.14 (Gauss's Mean Value Theorem).  If f(z) is analytic in a simply connected domain  D  that contains the circle  [Graphics:Images/FunTheoremAlgebraMod_gr_2.gif],  then  

            [Graphics:Images/FunTheoremAlgebraMod_gr_3.gif].  

Theorem 6.15 (Maximum Modulus Principle).  Let f(z) be analytic and nonconstant in the bounded domain D.  Then  [Graphics:Images/FunTheoremAlgebraMod_gr_4.gif]  does not attain a maximum value at any point [Graphics:Images/FunTheoremAlgebraMod_gr_5.gif] in D.

Theorem 6.16 (Maximum Modulus Principle).  Let f(z) be analytic and nonconstant in the bounded domain D.  If  f(z) is continuous on the closed region R that consists of D and all of its boundary points B, then [Graphics:Images/FunTheoremAlgebraMod_gr_6.gif] assumes its maximum value, and does so only at point(s) [Graphics:Images/FunTheoremAlgebraMod_gr_7.gif] on the boundary B.

Theorem 6.17 (Cauchy's Inequalities).  Let f(z) be analytic in the simply connected domain D that contains the circle  [Graphics:Images/FunTheoremAlgebraMod_gr_8.gif].  If  [Graphics:Images/FunTheoremAlgebraMod_gr_9.gif]  holds for all points [Graphics:Images/FunTheoremAlgebraMod_gr_10.gif],  then  

            [Graphics:Images/FunTheoremAlgebraMod_gr_11.gif]    for    [Graphics:Images/FunTheoremAlgebraMod_gr_12.gif].  

Theorem 6.18 (Liouville's Theorem).  If f(z) is an entire function and is bounded for all values of z in the complex plane, then f(z) is constant.

 

Theorem 6.19 (Fundamental Theorem of Algebra).  If P(z) is a polynomial of degree [Graphics:Images/FunTheoremAlgebraMod_gr_13.gif], then P(z) has at least one zero.

Proof.

Proof of Theorem 6.19 is in the book.
Complex Analysis for Mathematics and Engineering

 

Corollary 6.4.  Let P(z) be a polynomial of degree [Graphics:Images/FunTheoremAlgebraMod_gr_14.gif].  Then P(z) can be expressed as the product of linear factors.  That is,  

            [Graphics:Images/FunTheoremAlgebraMod_gr_15.gif]  

where  [Graphics:Images/FunTheoremAlgebraMod_gr_16.gif]  are the zeros of P(z) counted according to multiplicity an A is a constant.  

Proof.

 

    In Section 1.1, we introduced the formulas of Cardano and Tartaglia. Historically, formulas have been developed for the quadratic equation, cubic equation and quartic equation. There is no general formula for polynomial equations higher than fourth degree (see Abel's Impossibility Theorem).

 

The solution of the cubic equations.  The depressed cubic equation  [Graphics:Images/FunTheoremAlgebraMod_gr_17.gif] has roots

[Graphics:Images/FunTheoremAlgebraMod_gr_18.gif]
[Graphics:Images/FunTheoremAlgebraMod_gr_19.gif]
[Graphics:Images/FunTheoremAlgebraMod_gr_20.gif]

Exploration.

 

Example 1.  Find the zeros of the equation  [Graphics:Images/FunTheoremAlgebraMod_gr_24.gif].

Explore Solution for 1.

 

The solution of the cubic equations.  The general cubic equation  [Graphics:Images/FunTheoremAlgebraMod_gr_39.gif] has roots

[Graphics:Images/FunTheoremAlgebraMod_gr_40.gif]

[Graphics:Images/FunTheoremAlgebraMod_gr_41.gif]

[Graphics:Images/FunTheoremAlgebraMod_gr_42.gif]

Exploration.

 

Example 2.  Find the zeros of the equation  [Graphics:Images/FunTheoremAlgebraMod_gr_46.gif].

Explore Solution 2.

 

The solution of the quartic equations.  Mathematica can construct the solutions to the general quartic equation.

Exploration.

 

Example 3.  Find the n zeros of the equation  [Graphics:Images/FunTheoremAlgebraMod_gr_73.gif].

Explore Solution 3.

 

Example 4.  Find the n zeros of the equation  [Graphics:Images/FunTheoremAlgebraMod_gr_112.gif].

Explore Solution 4.

 

Example 5.  Find the roots of the [Graphics:Images/FunTheoremAlgebraMod_gr_148.gif] Chebyshev polynomial.

Explore Solution 5.

 

Extra Example 6.  Find the n zeros of the equation  [Graphics:Images/FunTheoremAlgebraMod_gr_250.gif].

Explore Solution 6.

 

Exercises for Section 6.7  The Fundamental Theorem of Algebra

 

Library Research Experience for Undergraduates

History of Complex Numbers

Fundamental Theorem of Algebra

 

 

 

 

The Next Module is

Uniform Convergence of Complex Functions

 

 

  

 Return to the Complex Analysis Modules

 

 

Return to the Complex Analysis Project

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This material is coordinated with our book Complex Analysis for Mathematics and Engineering.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 2012 John H. Mathews, Russell W. Howell