Complex Trigonometric and Hyperbolic Functions


5.4  Trigonometric and Hyperbolic Functions

    Based on the success we had in using power series to define the complex exponential (see Section 5.1), we have reason to believe this approach will be fruitful for other elementary functions as well. The power series expansions for the real-valued sine and cosine functions are

            [Graphics:Images/ComplexFunTrigMod_gr_1.gif],    and  

Thus, it is natural to make the following definitions.

Definition 5.5.   The series for  Sine and Cosine are

            [Graphics:Images/ComplexFunTrigMod_gr_3.gif],    and  

    Clearly, these definitions agree with their real counterparts when z is real.  Additionally, it is easy to show that [Graphics:Images/ComplexFunTrigMod_gr_5.gif] are entire functions.  (We leave the proof as an exercise.)


Exploration (i).  Investigate the series [Graphics:Images/ComplexFunTrigMod_gr_6.gif].  

Exploration (i).


Exploration (ii).  Investigate the series [Graphics:Images/ComplexFunTrigMod_gr_20.gif].  

Exploration (ii).


    With these definitions in place, it is now easy to create the other complex trigonometric functions, provided the denominators in the following expressions do not equal zero.


Definition 5.6.   [Graphics:Images/ComplexFunTrigMod_gr_36.gif],  [Graphics:Images/ComplexFunTrigMod_gr_37.gif],  [Graphics:Images/ComplexFunTrigMod_gr_38.gif],  and  [Graphics:Images/ComplexFunTrigMod_gr_39.gif].  

Exploration for Definition 5.6.


    Since the series for the complex sine and cosine agree with the real sine and cosine when z is real, the remaining complex trigonometric functions likewise agree with their real counterparts. What additional properties are common? For starters, we have  

Theorem 5.4.  [Graphics:Images/ComplexFunTrigMod_gr_41.gif] and [Graphics:Images/ComplexFunTrigMod_gr_42.gif] are entire functions, with  [Graphics:Images/ComplexFunTrigMod_gr_43.gif]  and  [Graphics:Images/ComplexFunTrigMod_gr_44.gif].  

Proof of Theorem 5.4.

Exploration for Theorem 5.4.


    We now list several additional properties, providing proofs for some and leaving others as exercises.  For all complex numbers z,



    The verification that  [Graphics:Images/ComplexFunTrigMod_gr_49.gif]  and  [Graphics:Images/ComplexFunTrigMod_gr_50.gif]  comes from substituting -z for z in Definition 5.5.  We leave verification of the identity [Graphics:Images/ComplexFunTrigMod_gr_51.gif]  as an exercise (with hints).

Exploration for identities.


A series exploration (i) The derivative of  sin(z)  is  cos(z).
A series exploration (i).


A series exploration (ii) The derivative of  cos(z)  is  -sin(z).
A series exploration (ii).


    For all complex numbers z for which the expressions are defined,  



Exploration for the identities.


    To establish additional properties, it will be useful to express [Graphics:Images/ComplexFunTrigMod_gr_62.gif] in the Cartesian form [Graphics:Images/ComplexFunTrigMod_gr_63.gif].  (Additionally, the applications in Chapters 10 and 11 will use these formulas.)  We begin by observing that the argument given to prove part (iii) in Theorem 5.1 easily generalizes to the complex case with the aid of Definition 5.5.  That is,  

(5-30)            [Graphics:Images/ComplexFunTrigMod_gr_64.gif],

for all z, whether z is real or complex.  Hence,  

(5-31)            [Graphics:Images/ComplexFunTrigMod_gr_65.gif]  

    Adding the above two expressions and solving for [Graphics:Images/ComplexFunTrigMod_gr_66.gif] gives

(5-32)            [Graphics:Images/ComplexFunTrigMod_gr_67.gif] ,

and subtracting (5-32) from (5-31) and solving for [Graphics:Images/ComplexFunTrigMod_gr_68.gif] gives

(5-33)            [Graphics:Images/ComplexFunTrigMod_gr_69.gif].  


                Figure 5.A  The mapping  [Graphics:Images/ComplexFunTrigMod_gr_71.gif].

These equations in turn are used to obtain the following important identities

(5-34)            [Graphics:Images/ComplexFunTrigMod_gr_72.gif],

(5-35)            [Graphics:Images/ComplexFunTrigMod_gr_73.gif].  


Exploration for the real and imaginary parts of Sin and Cos.


    Equipped with Identities (5-32) - (5-35), we can now establish many other properties of the trigonometric functions.  We begin with some periodic results.  For all complex numbers [Graphics:Images/ComplexFunTrigMod_gr_93.gif],  


Clearly, [Graphics:Images/ComplexFunTrigMod_gr_95.gif].  By Identity (5-34) this expression is  


Again, the proofs for the other periodic results are left as exercises.

Exploration for trigonometric identities.


    If  [Graphics:Images/ComplexFunTrigMod_gr_109.gif]  are any complex numbers, then


    We demonstrate that [Graphics:Images/ComplexFunTrigMod_gr_111.gif] by making use of Identities (5-32) - (5-35):  

            [Graphics:Images/ComplexFunTrigMod_gr_112.gif],   and  


Adding these expressions gives


which is what we wanted.


Demonstration.  Establish the identity  [Graphics:Images/ComplexFunTrigMod_gr_115.gif].  

Exploration Method (i).

Exploration Method (ii).


    A solution to the equation  [Graphics:Images/ComplexFunTrigMod_gr_125.gif]  is called a zero of the given function f.  As we now show, the zeros of the sine and cosine function are exactly where you might expect them to be.  We have  [Graphics:Images/ComplexFunTrigMod_gr_126.gif]  iff  [Graphics:Images/ComplexFunTrigMod_gr_127.gif],  where n is any integer, and  [Graphics:Images/ComplexFunTrigMod_gr_128.gif]  iff  [Graphics:Images/ComplexFunTrigMod_gr_129.gif],  where n is any integer.

    We show the result for [Graphics:Images/ComplexFunTrigMod_gr_130.gif] and leave the result for [Graphics:Images/ComplexFunTrigMod_gr_131.gif] as an exercise.  When we use Identity (5-35),  [Graphics:Images/ComplexFunTrigMod_gr_132.gif]  iff  


Equating the real and imaginary parts of this equation gives

            [Graphics:Images/ComplexFunTrigMod_gr_134.gif]   and   [Graphics:Images/ComplexFunTrigMod_gr_135.gif].  

The real-valued function cosh y is never zero, so the equation  [Graphics:Images/ComplexFunTrigMod_gr_136.gif]  implies that  [Graphics:Images/ComplexFunTrigMod_gr_137.gif],  from which we obtain [Graphics:Images/ComplexFunTrigMod_gr_138.gif] for any integer n .  

Using the values    in the equation  [Graphics:Images/ComplexFunTrigMod_gr_140.gif]  yields  


which implies that  [Graphics:Images/ComplexFunTrigMod_gr_142.gif],  so the only zeros for [Graphics:Images/ComplexFunTrigMod_gr_143.gif] are the values [Graphics:Images/ComplexFunTrigMod_gr_144.gif]  for  n  an integer.



    What does the mapping [Graphics:Images/ComplexFunTrigMod_gr_156.gif] look like?  We can get a graph of the mapping  [Graphics:Images/ComplexFunTrigMod_gr_157.gif]  by using parametric methods.  Let's consider the vertical line segments in the z plane obtained by successfully setting  [Graphics:Images/ComplexFunTrigMod_gr_158.gif]  for [Graphics:Images/ComplexFunTrigMod_gr_159.gif], and for each x value and letting y vary continuously, [Graphics:Images/ComplexFunTrigMod_gr_160.gif].  In the exercises we ask you to show that the images of these vertical segments are hyperbolas in the uv plane, as Figure 5.7 illustrates.  In Section 10.4, we give a more detailed analysis of the mapping  [Graphics:Images/ComplexFunTrigMod_gr_161.gif].


            Figure 5.7  Vertical segments mapped onto hyperbolas by  [Graphics:Images/ComplexFunTrigMod_gr_163.gif].



    Figure 5.7 suggests one big difference between the real and complex sine functions. The real sine has the property that  [Graphics:Images/ComplexFunTrigMod_gr_175.gif]  for all real x.  In Figure 5.7, however, the modulus of the complex sine appears to be unbounded, which is indeed the case.  Using Identity (5-34) gives  


The identities  [Graphics:Images/ComplexFunTrigMod_gr_177.gif]  and  [Graphics:Images/ComplexFunTrigMod_gr_178.gif]  then yield  

(5-36)            [Graphics:Images/ComplexFunTrigMod_gr_179.gif].  

A similar derivation produces  

(5-37)            [Graphics:Images/ComplexFunTrigMod_gr_180.gif].  

    If we set [Graphics:Images/ComplexFunTrigMod_gr_181.gif] in Identity (5-36) and let  [Graphics:Images/ComplexFunTrigMod_gr_182.gif],  we get  


As advertised, we have shown that [Graphics:Images/ComplexFunTrigMod_gr_184.gif] is not a bounded function; it is also evident from Identity (5-37) that [Graphics:Images/ComplexFunTrigMod_gr_185.gif] is unbounded.



    The periodic character of the trigonometric functions makes apparent that any point in their ranges is actually the image of infinitely many points.


Example 5.10.  Find all the values of  z  for which  [Graphics:Images/ComplexFunTrigMod_gr_190.gif].

Solution.  Starting with Identity (5-35), we write


If we equate real and imaginary parts, then we get

            [Graphics:Images/ComplexFunTrigMod_gr_192.gif]   and   [Graphics:Images/ComplexFunTrigMod_gr_193.gif].  

The equation  [Graphics:Images/ComplexFunTrigMod_gr_194.gif]  implies either that  [Graphics:Images/ComplexFunTrigMod_gr_195.gif], where n is an integer, or that [Graphics:Images/ComplexFunTrigMod_gr_196.gif].  Using [Graphics:Images/ComplexFunTrigMod_gr_197.gif] in the equation [Graphics:Images/ComplexFunTrigMod_gr_198.gif]  leads to the impossible situation  [Graphics:Images/ComplexFunTrigMod_gr_199.gif].  Therefore  [Graphics:Images/ComplexFunTrigMod_gr_200.gif], where n is an integer.  Since  [Graphics:Images/ComplexFunTrigMod_gr_201.gif]  for all values of y, the term [Graphics:Images/ComplexFunTrigMod_gr_202.gif] in the equation  [Graphics:Images/ComplexFunTrigMod_gr_203.gif]  must also be positive.  For this reason we eliminate the odd values of n and get  [Graphics:Images/ComplexFunTrigMod_gr_204.gif], where k is an integer.

    Finally, we solve the equation  [Graphics:Images/ComplexFunTrigMod_gr_205.gif]  and use the fact that [Graphics:Images/ComplexFunTrigMod_gr_206.gif] is an even function to conclude that  [Graphics:Images/ComplexFunTrigMod_gr_207.gif].  Therefore the solutions to the equation  [Graphics:Images/ComplexFunTrigMod_gr_208.gif]  are  [Graphics:Images/ComplexFunTrigMod_gr_209.gif],  where k is an integer.

Explore Solution 5.10.


    The hyperbolic functions also have practical use in putting the tangent function into the Cartesian form [Graphics:Images/ComplexFunTrigMod_gr_216.gif].  
Using Definition 5.6, and Equations (5-34) and (5-35), we have  

(5-38)            [Graphics:Images/ComplexFunTrigMod_gr_217.gif].  

If we multiply each term on the right by the conjugate of the denominator, the simplified result is  


We leave it as an exercise to show that the identities  [Graphics:Images/ComplexFunTrigMod_gr_219.gif]  and  [Graphics:Images/ComplexFunTrigMod_gr_220.gif]  can be used in simplifying Equation (5-38) to get  

(5-39)            [Graphics:Images/ComplexFunTrigMod_gr_221.gif]



    As with [Graphics:Images/ComplexFunTrigMod_gr_224.gif], we obtain a graph of the mapping [Graphics:Images/ComplexFunTrigMod_gr_225.gif] parametrically.  Consider the vertical line segments in the z plane obtained by successively setting  [Graphics:Images/ComplexFunTrigMod_gr_226.gif]  for  [Graphics:Images/ComplexFunTrigMod_gr_227.gif],  and for each z value letting y vary continuously, [Graphics:Images/ComplexFunTrigMod_gr_228.gif].  In the exercises we ask you to show that the images of these vertical segments are circular arcs in the uv plane, as Figure 5.8 shows.  In Section 10.4, we give a more detailed investigation of the mapping  [Graphics:Images/ComplexFunTrigMod_gr_229.gif].


    Figure 5.8  Vertical segments mapped onto circular arcs by  [Graphics:Images/ComplexFunTrigMod_gr_231.gif].



    How should we define the complex hyperbolic functions?  We begin with


Definition 5.7.   The hyperbolic cosine and hyperbolic sine functions are  


    With these definitions in place, we can now easily create the other complex hyperbolic trigonometric functions, provided the denominators in the following expressions are not zero.


Definition 5.8.   Identities for the hyperbolic trigonometric functions are  


    As the series for the complex hyperbolic sine and cosine agree with the real hyperbolic sine and cosine when z is real, the remaining complex hyperbolic trigonometric functions likewise agree with their real counterparts. Many other properties are also shared. We state several results without proof, as they follow from the definitions we gave using standard operations, such as the quotient rule for derivatives. We ask you to establish some of these identities in the exercises.

    The derivatives of the hyperbolic functions follow the same rules as in calculus:  












    The hyperbolic cosine and hyperbolic sine can be expressed as  


    Some of the important identities involving the hyperbolic functions are  



Exercises for Section 5.4.  Trigonometric and Hyperbolic Functions


Library Research Experience for Undergraduates

Exponential Function

Complex Logarithms

Conformal Mapping

Smith Chart





The Next Module is

Inverse Trigonometric and Hyperbolic Functions




Return to the Complex Analysis Modules  



Return to the Complex Analysis Project
























This material is coordinated with our book Complex Analysis for Mathematics and Engineering.
























(c) 2012 John H. Mathews, Russell W. Howell