Module

for

Preliminary Applications of Harmonic Functions

 

Chapter 11  Applications of Harmonic Functions

11.1  Preliminaries

Overview

    A wide variety of problems in engineering and physics involve harmonic functions, which are the real or imaginary part of an analytic function.  The standard applications are two dimensional steady state temperatures, electrostatics, fluid flow and complex potentials.  The techniques of conformal mapping and integral representation can be used to construct a harmonic function with prescribed boundary values.  Noteworthy methods include Poisson's integral formulae; the Joukowski transformation; and Schwarz-Christoffel transformation.  Modern computer software is capable of implemeting these complex analysis methods.

    In most applications involving harmonic functions, a harmonic function that takes on prescribed values along certain contours must be found.  In presenting the material in this chapter, we assume that you are familiar with the material covered in Sections 2.5, 3.3, 5.1, and 5.2.  If you aren't, please review it before proceeding.

 

Example 11.1.  Find the function u(x,y) that is harmonic in the vertical strip [Graphics:Images/ApplicationPreliminaryMod_gr_1.gif] and takes on the boundary values

            [Graphics:Images/ApplicationPreliminaryMod_gr_2.gif]    for all  y,  and
            [Graphics:Images/ApplicationPreliminaryMod_gr_3.gif]    for all  y,

along the vertical lines  [Graphics:Images/ApplicationPreliminaryMod_gr_4.gif],  respectively.

[Graphics:Images/ApplicationPreliminaryMod_gr_5.gif]

Solution.  Intuition suggests that we should seek a solution that takes on constant values along the vertical lines of the form [Graphics:Images/ApplicationPreliminaryMod_gr_6.gif] and that u(x,y) be a function of x alone; that is,

            [Graphics:Images/ApplicationPreliminaryMod_gr_7.gif],    for  [Graphics:Images/ApplicationPreliminaryMod_gr_8.gif]  and for all y.

Laplace's equation,  [Graphics:Images/ApplicationPreliminaryMod_gr_9.gif],  implies that  [Graphics:Images/ApplicationPreliminaryMod_gr_10.gif],  which implies  [Graphics:Images/ApplicationPreliminaryMod_gr_11.gif],  where m and c are constants.  The stated boundary conditions  [Graphics:Images/ApplicationPreliminaryMod_gr_12.gif]  and  [Graphics:Images/ApplicationPreliminaryMod_gr_13.gif]  lead to the solution  

            [Graphics:Images/ApplicationPreliminaryMod_gr_14.gif].  

The level curves  [Graphics:Images/ApplicationPreliminaryMod_gr_15.gif]  are vertical lines as indicated in Figure 11.1.

 

Figure 11.1  Level curves of the harmonic function  [Graphics:Images/ApplicationPreliminaryMod_gr_16.gif].

Explore Solution 11.1.

 

Example 11.2.  Find the function [Graphics:Images/ApplicationPreliminaryMod_gr_24.gif] that is harmonic in the sector  [Graphics:Images/ApplicationPreliminaryMod_gr_25.gif] and takes on the boundary values

            [Graphics:Images/ApplicationPreliminaryMod_gr_26.gif]   for  x > 0,
            [Graphics:Images/ApplicationPreliminaryMod_gr_27.gif]   for all points on the ray  [Graphics:Images/ApplicationPreliminaryMod_gr_28.gif].  

[Graphics:Images/ApplicationPreliminaryMod_gr_29.gif]

Solution.  Recalling that the function  [Graphics:Images/ApplicationPreliminaryMod_gr_30.gif]  is harmonic and takes on constant values along rays emanating from the origin, we see that a solution has the form  

            [Graphics:Images/ApplicationPreliminaryMod_gr_31.gif],  

where a and b are constants.  The boundary conditions lead to  

            [Graphics:Images/ApplicationPreliminaryMod_gr_32.gif].  

The level curves  [Graphics:Images/ApplicationPreliminaryMod_gr_33.gif]  are rays emanating from the origin as indicated in Figure 11.2.

 

Figure 11.2  Level curves of the harmonic function  [Graphics:Images/ApplicationPreliminaryMod_gr_34.gif].  

 Explore Solution 11.2.

 

Example 11.3.  Find the function [Graphics:Images/ApplicationPreliminaryMod_gr_43.gif] that is harmonic in the annulus  [Graphics:Images/ApplicationPreliminaryMod_gr_44.gif]  and takes on the boundary values  

            [Graphics:Images/ApplicationPreliminaryMod_gr_45.gif]   when  [Graphics:Images/ApplicationPreliminaryMod_gr_46.gif],  and  
            [Graphics:Images/ApplicationPreliminaryMod_gr_47.gif]   when  [Graphics:Images/ApplicationPreliminaryMod_gr_48.gif].  

[Graphics:Images/ApplicationPreliminaryMod_gr_49.gif]

Solution.  This problem is a companion to the one in Example 11.2.  Here we use the fact that  [Graphics:Images/ApplicationPreliminaryMod_gr_50.gif]  is a harmonic function, for all  [Graphics:Images/ApplicationPreliminaryMod_gr_51.gif].  The solution is

            [Graphics:Images/ApplicationPreliminaryMod_gr_52.gif],   

and the level curves  [Graphics:Images/ApplicationPreliminaryMod_gr_53.gif]  are concentric circles, as illustrated in Figure 11.3.

Figure 11.3  Level curves of the harmonic function    [Graphics:Images/ApplicationPreliminaryMod_gr_54.gif].  

Explore Solution 11.3.

 

Exercises for Section 11.1  Preliminaries

 

Library Research Experience for Undergraduates

Dirichlet Problem

Electrostatics

Steady State Temperature

 

 

 

The Next Module is

Laplace's Equation and Dirichlet Problem  

 

 

Return to the Complex Analysis Modules  

 

 

Return to the Complex Analysis Project

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This material is coordinated with our book Complex Analysis for Mathematics and Engineering.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 2012 John H. Mathews, Russell W. Howell