Computed Solution Curves for Differential Equations

by John H. Mathews
California State University, Fullerton
Fullerton, CA 92634

John H. Mathews is currently a professor of mathematics at California State University, Fullerton. He received a Ph.D. from Michigan State University under the direction of Peter Lappan in 1969. He has taught at CSUF for twenty years and is the author of two books: Numerical Methods for Computer Science, Engineering and Mathematics, Prentice-Hall, Inc., Englewood Cliffs [1987] and Complex Variables for Mathematics and Engineering, (2 cd ed.) William C. Brown, Inc. [1988]. He is interested in how numerical methods can be introduced into the calculus curriculum.

An important problem in numerical analysis is to compute approximate solutions of the differential equation.

$$y'(x) = f(x,y). \quad (1)$$

Under modest (and well known) assumptions on f, the "general solution" of (1) consists of an infinite family of functions, each of which may be distinguished by selection of an initial point $(a,y(a))$. Starting from this initial point, numerical methods attempt to approximate the solution $y = y(x)$ on some specified interval $[a,b]$.

Continuity of $f(x,y)$ does not ensure the continuity of $y(x)$. Suppose that $y(x)$ has an infinite discontinuity at $x = c$, that is $\lim_{x \to c} |f(x)| = \infty$. Then the reciprocal $Y(x) = 1/y(x)$ tends to zero as $x \to c$, and $Y(x)$ will have a removable singularity at $x = c$ provided that we define $Y(c) = 0$. Therefore, we can use the change of variable

$$Y(x) = 1/y(x). \quad (2)$$

Now differentiate each side of (2) and get

$$Y'(x) = - y'(x)/[y(x)]^2 = - [Y(x)]^2 y'(x).$$

Then substitute $y'(x)$ from (1) and obtain:

$$Y'(x) = - Y^2 f(x,1/Y). \quad (3)$$

Differential equation (3) is equivalent to (1) in this sense: Given a neighborhood N of x_0 and a number $y_0 \neq 0$, equation (1) has a solution with $y(x_0) = y_0$ and $y(x) \neq 0$ for all x in N if and only if equation (3) has a solution with $Y(x_0) = 1/y_0$ and $Y(x) \neq 0$. We call equation (3) the companion differential equation and write it as

$$Y'(x) = g(x,Y). \quad (4)$$

Numerical methods "track" a specific solution curve through the starting point (x_0,y_0). The success of using (4) for tracking the solution $y(x)$ near a singularity is the fact that $|y(x)| \to \infty$ as $x \to c$ if and only if $Y(x) \to 0$ as $x \to c$. A numerical solution $Y(x)$ to (4) can be computed over a small interval containing c, then (2) is used to determine a solution curve for (1) that lies on both sides of the vertical asymptote $x = c$.

30
A procedure such as the Euler-Heun method, uses a fixed step size $h = \frac{(b-a)}{M}$ and for each $x_j = a + jh$ an approximation y_j to $y(x_j)$ is computed (for $1 \leq j \leq M$). This computed value y_j depends on y_{j-1} and the slope function f. If $|y(x)| \to \infty$ as $x \to c$ then the numerical method fails to follow the true solution accurately because of the inherent numerical instability of computing a "rise" as the product of a very large slope and very small "run" (a computation which magnifies the errors present in the value y_{j-1}). One way to reduce this error is to select a bound B and change computational strategy as soon as a value $f_L = f(x_L, y_L)$ is computed for which $|f_L| > B$, that is, as soon as the possibility of a singularity is "sensed." In particular, we may use $(x_L, 1/y_L)$ as an initial value with (4) to track the reciprocal Y, which will not suffer from the difficulties created by steep slopes.

Thus, the following strategy can be employed to extend any single-step numerical method (See Mathews, 1987, Chapter 9, for a discussion of single-step methods). We use equation (1) and the initial value $y(a) = y_0$ to compute the sequence of points

\[
\{(x_j, y_j)\}_{j=1}^{L} \text{ where } |f_j| \leq B \text{ for } j = 0, \ldots, L-1 \text{ and } |f_L| > B.
\]

Then we use (4) with $Y(x_L) = 1/y_L$ to compute the sequence of points

\[
\{(x_j, Y_j)\}_{j=L}^{N} \text{ where } |f_j| > B \text{ for } j = L, L+1, \ldots, N-1 \text{ and } |f_N| \leq B.
\]

Continue in a similar fashion and alternate between formula (1) and formula (4) until $j = M$.

The decision process, for the "extended" Euler-Heun method is:

IF $|f_j| \leq B$ THEN

perform one Euler-Heun step using

$y' = f(x, y)$ to compute y_{j+1}

ELSE

set $Y_{j+1} = 1/y_{j+1}$ and perform one Euler-Heun step using $Y' = g(x, Y)$ to compute Y_{j+1} and then set $y_{j+1} = 1/Y_{j+1}$.

ENDIF

When (4) is used for numerical computations, the formula for $g(x, Y)$ must be simplified in advance so that "0/0" or "∞/∞" computational problems do not occur. In particular, $-Y^2 f(x, 1/Y)$ should not be used in a computer program.

Example 1. We use the extended Euler-Heun method with the step size of $h = 0.005$ to find a numerical approximation to the solution of $y' = 1 + y^2$ with $y(0) = 0$ over the interval $[0, 2]$. The companion differential equation is $Y' = -Y^2(1 + 1/Y^2) = -1 - Y^2 = g(x, Y)$. The value B is arbitrary, and experimentation was used to find that $B = 3$ gave excellent results. Selected values of y are presented in Table 1 and compared with the true solution $y(x_j) = \tan(x_j)$. Figure 1 shows a graph of the numerical solution. The method behaves well at $x = 1.56$ and $x = 1.58$, which are on opposite sides of the singularity at $x = \pi/2$.

31
TABLE I. Comparison of the approximate solution y_j to $y' = 1 + y^2$ and $y = \tan(x)$ over the interval $[0, 2]$.

<table>
<thead>
<tr>
<th>x_j</th>
<th>The Extended Euler-Heun Solution y_j</th>
<th>Error in the Approximation $E_j = \tan(x_j) - y_j$</th>
<th>Relative error $E_j / \tan(x_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.422795</td>
<td>-0.000002</td>
<td>-0.000004</td>
</tr>
<tr>
<td>0.8</td>
<td>1.029640</td>
<td>-0.000001</td>
<td>-0.000001</td>
</tr>
<tr>
<td>1.2</td>
<td>2.572138</td>
<td>0.000014</td>
<td>0.000005</td>
</tr>
<tr>
<td>1.55</td>
<td>48.077308</td>
<td>0.001174</td>
<td>0.000024</td>
</tr>
<tr>
<td>1.56</td>
<td>92.616495</td>
<td>0.004001</td>
<td>0.000043</td>
</tr>
<tr>
<td>1.57</td>
<td>1255.096100</td>
<td>0.669491</td>
<td>0.000533</td>
</tr>
<tr>
<td>1.58</td>
<td>-108.653727</td>
<td>0.004523</td>
<td>-0.000042</td>
</tr>
<tr>
<td>1.59</td>
<td>-52.067896</td>
<td>0.000926</td>
<td>-0.000018</td>
</tr>
<tr>
<td>1.6</td>
<td>-34.232884</td>
<td>0.000351</td>
<td>-0.000010</td>
</tr>
<tr>
<td>1.8</td>
<td>-4.286252</td>
<td>-0.000010</td>
<td>0.000002</td>
</tr>
<tr>
<td>2.0</td>
<td>-2.185034</td>
<td>-0.000006</td>
<td>0.000003</td>
</tr>
</tbody>
</table>

Fig. 1. The graph of the solution to $y' = 1 + y^2$, $y(0) = 0$ using the extended Euler-Heun method.

The following is a sample program written in Turbo Pascal for the extended Euler-Heun method. Notice the functions $f(x, Y)$ and $g(x, Y)$ must be given and that $g(x, Y)$ must be simplified so that small values of Y near 0 will not cause an exponent overflow.

The AMATYC Review Fall 1989 Volume 11, Number 1 (Part 1)
PROCEDURE EXTENDED_EULER_METHOD;
CONST Big=3;
FUNCTION F(X,Y:REAL) : REAL;
BEGIN F:=1+Y*Y; END;
FUNCTION G(X,Y:REAL) : REAL;
BEGIN G:=-1-Y*Y; END;
PROCEDURE Euler_Small;
BEGIN
 YJ:=Y[J];
 M1:=F(X[J],YJ);
 P1:=YJ+H*M1;
 X[J+1]:=A+H*(J+1);
 M2:=F(X[J+1],P1);
 Y[J+1]:=YJ+H*(M1+M2)/2;
{Corrector}
END;
PROCEDURE Euler_Large;
BEGIN
 YJ:=1/Y[J];
 M1:=G(X[J],YJ);
 P1:=YJ+H*M1;
 X[J+1]:=A+H*(J+1);
 M2:=G(X[J+1],P1);
 Y[J+1]:=YJ+H*(M1+M2)/2;
{Corrector}
END;
BEGIN
 H:=(B-A)/M;
 X[0]:=A;
 Y[0]:=Y0;
 FOR J := 0 TO M-1 DO
 BEGIN
 IF ABS(F(X[J],Y[J])) <= Big THEN Euler_Small
 ELSE Euler_Large;
 END;
END;
References