Milne-Simpson Method

Another popular predictor-corrector scheme is known as the Milne-Simpson method. Its predictor is based on integration of \(f(t, y(t)) \) over the interval \([t_{k-3}, t_{k+1}]\):

\[
y(t_{k+1}) = y(t_{k-3}) + \int_{t_{k-3}}^{t_{k+1}} f(t, y(t)) \, dt.
\]

The predictor uses the Lagrange polynomial approximation for \(f(t, y(t)) \) based on the points \((t_{k-3}, f_{k-3}), (t_{k-2}, f_{k-2}), (t_{k-1}, f_{k-1}), \) and \((t_{k}, f_{k})\). It is integrated over the interval \([t_{k-3}, t_{k+1}]\). This produces the Milne predictor:

\[
p_{k+1} = y_{k-3} + \frac{4h}{3}(2f_{k-2} - f_{k-1} + 2f_{k}).
\]

The corrector is developed similarly. The value \(p_{k+1} \) can now be used. A second Lagrange polynomial for \(f(t, y(t)) \) is constructed, which is based on the points \((t_{k-1}, f_{k-1}), (t_{k}, f_{k}), \) and the new point \((t_{k+1}, f_{k+1}) = (t_{k+1}, f(t_{k+1}, p_{k+1}))\). The polynomial is integrated over \([t_{k-1}, t_{k+1}]\), and the result is the familiar Simpson’s rule:

\[
y_{k+1} = y_{k-1} + \frac{h}{3}(f_{k-1} + 4f_{k} + f_{k+1}).
\]

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor and corrector are of the order \(O(h^5)\). The L.T.E. for the formulas in (11) and (12) are

\[
y(t_{k+1}) - p_{k+1} = \frac{28}{90} y^{(5)}(c_{k+1})h^5 \quad \text{(L.T.E. for the predictor)},
\]

\[
y(t_{k+1}) - y_{k+1} = -\frac{1}{90} y^{(5)}(d_{k+1})h^5 \quad \text{(L.T.E. for the corrector)}.
\]

Suppose that \(h \) is small enough so that \(y^{(5)}(t) \) is nearly constant over the interval \([t_{k-3}, t_{k+1}]\). Then the terms involving the fifth derivative can be eliminated in (13) and (14) and the result is

\[
y(t_{k+1}) - p_{k+1} \approx \frac{28}{29}(y_{k+1} - p_{k+1}).
\]
Formula (15) gives an error estimate for the predictor that is based on the two computed values p_{k+1} and y_{k+1} and does not use $y^{(5)}(t)$. It can be used to improve the predicted value. Under the assumption that the difference between the predicted and corrected values at each step changes slowly, we can substitute p_k and y_k for p_{k+1} and y_{k+1} in (15) and get the following modifier:

\begin{equation}
 m_{k+1} = p_{k+1} + 28 \frac{y_k - p_k}{29}.
\end{equation}

This modified value is used in place of p_{k+1} in the correction step, and equation (12) becomes

\begin{equation}
 y_{k+1} = y_{k-1} + \frac{h}{3}(f_{k-1} + 4f_k + f(t_{k+1}, m_{k+1})).
\end{equation}

Therefore, the improved (modified) Milne-Simpson method is

\begin{align}
 p_{k+1} &= y_{k-3} + \frac{4h}{3}(2f_{k-2} - f_{k-1} + 2f_k) \quad \text{(predictor)}
 \\
 m_{k+1} &= p_{k+1} + 28 \frac{y_k - p_k}{29} \quad \text{(modifier)}
 \\
 f_{k+1} &= f(t_{k+1}, m_{k+1})
 \\
 y_{k+1} &= y_{k-1} + \frac{h}{3}(f_{k-1} + 4f_k + f_{k+1}) \quad \text{(corrector)}.
\end{align}

Hamming’s method is another important method. We shall omit its derivation, but furnish a program at the end of the section. As a final precaution we mention that all the predictor-corrector methods have stability problems. Stability is an advanced topic and the serious reader should research this subject.

Example 9.13. Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming methods with $h = \frac{1}{8}$ and compute approximations for the solution of the I.V.P.

\[y' = \frac{t - y}{2}, \quad y(0) = 1 \quad \text{over } [0, 3].\]

A Runge-Kutta method was used to obtain the starting values

\[y_1 = 0.94323919, \quad y_2 = 0.89749071, \quad \text{and} \quad y_3 = 0.86208736.\]

Then a computer implementation of Programs 9.6 through 9.8 produced the values in Table 9.12. The error for each entry in the table is given as a multiple of 10^{-8}. In all entries there are at least six digits of accuracy. In this example, the best answers were produced by Hamming’s method.
Table 9.12 Comparison of the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming Methods for Solving $y' = (t - y)/2$, $y(0) = 1$

<table>
<thead>
<tr>
<th>k</th>
<th>Adams-Bashforth-Moulton</th>
<th>Error</th>
<th>Milne-Simpson</th>
<th>Error</th>
<th>Hamming’s method</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00000000</td>
<td>$0E - 8$</td>
<td>1.00000000</td>
<td>$0E - 8$</td>
<td>1.00000000</td>
<td>$0E - 8$</td>
</tr>
<tr>
<td>0.5</td>
<td>0.83640227</td>
<td>$8E - 8$</td>
<td>0.83640231</td>
<td>$4E - 8$</td>
<td>0.83640234</td>
<td>$1E - 8$</td>
</tr>
<tr>
<td>0.625</td>
<td>0.81984673</td>
<td>$16E - 8$</td>
<td>0.81984687</td>
<td>$2E - 8$</td>
<td>0.81984688</td>
<td>$1E - 8$</td>
</tr>
<tr>
<td>0.75</td>
<td>0.81186762</td>
<td>$22E - 8$</td>
<td>0.81186778</td>
<td>$6E - 8$</td>
<td>0.81186783</td>
<td>$1E - 8$</td>
</tr>
<tr>
<td>0.875</td>
<td>0.81194530</td>
<td>$28E - 8$</td>
<td>0.81194555</td>
<td>$3E - 8$</td>
<td>0.81194558</td>
<td>$0E - 8$</td>
</tr>
<tr>
<td>1.0</td>
<td>0.81959166</td>
<td>$32E - 8$</td>
<td>0.81959190</td>
<td>$8E - 8$</td>
<td>0.81959198</td>
<td>$0E - 8$</td>
</tr>
<tr>
<td>1.5</td>
<td>0.91709920</td>
<td>$46E - 8$</td>
<td>0.91709957</td>
<td>$9E - 8$</td>
<td>0.91709967</td>
<td>$-1E - 8$</td>
</tr>
<tr>
<td>2.0</td>
<td>1.10363781</td>
<td>$51E - 8$</td>
<td>1.10363822</td>
<td>$10E - 8$</td>
<td>1.10363834</td>
<td>$-2E - 8$</td>
</tr>
<tr>
<td>2.5</td>
<td>1.35951387</td>
<td>$52E - 8$</td>
<td>1.35951429</td>
<td>$10E - 8$</td>
<td>1.35951441</td>
<td>$-2E - 8$</td>
</tr>
<tr>
<td>2.625</td>
<td>1.43243853</td>
<td>$52E - 8$</td>
<td>1.43243899</td>
<td>$6E - 8$</td>
<td>1.43243907</td>
<td>$-2E - 8$</td>
</tr>
<tr>
<td>2.75</td>
<td>1.50851827</td>
<td>$52E - 8$</td>
<td>1.50851869</td>
<td>$10E - 8$</td>
<td>1.50851881</td>
<td>$-2E - 8$</td>
</tr>
<tr>
<td>2.875</td>
<td>1.58756195</td>
<td>$51E - 8$</td>
<td>1.58756240</td>
<td>$6E - 8$</td>
<td>1.58756248</td>
<td>$-2E - 8$</td>
</tr>
<tr>
<td>3.0</td>
<td>1.66938998</td>
<td>$50E - 8$</td>
<td>1.66939038</td>
<td>$10E - 8$</td>
<td>1.66939050</td>
<td>$-2E - 8$</td>
</tr>
</tbody>
</table>